• search hit 7 of 51
Back to Result List

Modeling and Formal Analysis of Meta-Ecosystems with Dynamic Structure using Graph Transformation

  • The dynamics of ecosystems is of crucial importance. Various model-based approaches exist to understand and analyze their internal effects. In this paper, we model the space structure dynamics and ecological dynamics of meta-ecosystems using the formal technique of Graph Transformation (short GT). We build GT models to describe how a meta-ecosystem (modeled as a graph) can evolve over time (modeled by GT rules) and to analyze these GT models with respect to qualitative properties such as the existence of structural stabilities. As a case study, we build three GT models describing the space structure dynamics and ecological dynamics of three different savanna meta-ecosystems. The first GT model considers a savanna meta-ecosystem that is limited in space to two ecosystem patches, whereas the other two GT models consider two savanna meta-ecosystems that are unlimited in the number of ecosystem patches and only differ in one GT rule describing how the space structure of the meta-ecosystem grows. In the first two GT models, the spaceThe dynamics of ecosystems is of crucial importance. Various model-based approaches exist to understand and analyze their internal effects. In this paper, we model the space structure dynamics and ecological dynamics of meta-ecosystems using the formal technique of Graph Transformation (short GT). We build GT models to describe how a meta-ecosystem (modeled as a graph) can evolve over time (modeled by GT rules) and to analyze these GT models with respect to qualitative properties such as the existence of structural stabilities. As a case study, we build three GT models describing the space structure dynamics and ecological dynamics of three different savanna meta-ecosystems. The first GT model considers a savanna meta-ecosystem that is limited in space to two ecosystem patches, whereas the other two GT models consider two savanna meta-ecosystems that are unlimited in the number of ecosystem patches and only differ in one GT rule describing how the space structure of the meta-ecosystem grows. In the first two GT models, the space structure dynamics and ecological dynamics of the meta-ecosystem shows two main structural stabilities: the first one based on grassland-savanna-woodland transitions and the second one based on grassland-desert transitions. The transition between these two structural stabilities is driven by high-intensity fires affecting the tree components. In the third GT model, the GT rule for savanna regeneration induces desertification and therefore a collapse of the meta-ecosystem. We believe that GT models provide a complementary avenue to that of existing approaches to rigorously study ecological phenomena.show moreshow less
  • Die Dynamik von Ökosystemen ist von entscheidender Bedeutung. Es gibt verschiedene modellbasierte Ansätze, um ihre internen Effekte zu verstehen und zu analysieren. In diesem Beitrag modellieren wir die Raumstrukturdynamik und ökologische Dynamik von Metaökosystemen mit der formalen Technik der Graphtransformation (kurz GT). Wir bauen GT-Modelle, um zu beschreiben, wie sich ein Meta-Ökosystem (modelliert als Graph) im Laufe der Zeit entwickeln kann (modelliert durch GT-Regeln) und analysieren diese GT-Modelle hinsichtlich qualitativer Eigenschaften wie das Vorhandensein struktureller Stabilitäten. Als Fallstudie bauen wir drei GT-Modelle, die die Dynamik der Raumstruktur und die ökologische Dynamik von drei verschiedenen Savannen-Meta-Ökosystemen beschreiben. Das erste GT-Modell betrachtet ein Savannen-Meta-Ökosystem, das räumlich auf zwei Ökosystem-Abschnitte begrenzt ist, während die anderen beiden GT-Modelle zwei Savannen-Meta-Ökosysteme betrachten, die in der Anzahl von Ökosystem-Abschnitten uneingeschränkt sind und sich nur inDie Dynamik von Ökosystemen ist von entscheidender Bedeutung. Es gibt verschiedene modellbasierte Ansätze, um ihre internen Effekte zu verstehen und zu analysieren. In diesem Beitrag modellieren wir die Raumstrukturdynamik und ökologische Dynamik von Metaökosystemen mit der formalen Technik der Graphtransformation (kurz GT). Wir bauen GT-Modelle, um zu beschreiben, wie sich ein Meta-Ökosystem (modelliert als Graph) im Laufe der Zeit entwickeln kann (modelliert durch GT-Regeln) und analysieren diese GT-Modelle hinsichtlich qualitativer Eigenschaften wie das Vorhandensein struktureller Stabilitäten. Als Fallstudie bauen wir drei GT-Modelle, die die Dynamik der Raumstruktur und die ökologische Dynamik von drei verschiedenen Savannen-Meta-Ökosystemen beschreiben. Das erste GT-Modell betrachtet ein Savannen-Meta-Ökosystem, das räumlich auf zwei Ökosystem-Abschnitte begrenzt ist, während die anderen beiden GT-Modelle zwei Savannen-Meta-Ökosysteme betrachten, die in der Anzahl von Ökosystem-Abschnitten uneingeschränkt sind und sich nur in einer GT-Regel unterscheiden, die beschreibt, wie die Raumstruktur des Meta-Ökosystems wächst. In den ersten beiden GT-Modellen zeigen die Raumstrukturdynamik und die ökologische Dynamik des Metaökosystems zwei Hauptstrukturstabilitäten: die erste basiert auf Grasland-Savannen-Wald-Übergängen und die zweite basiert auf Grasland-Wüsten-Übergängen. Der Übergang zwischen diesen beiden strukturellen Stabilitäten wird durch hochintensive Brände angetrieben, die die Baumkomponenten beeinträchtigen. Beim dritten GT-Modell führt die Savannenregeneration beschreibende GT-Regel zur Wüstenbildung und damit zum Kollaps des Meta-Ökosystems. Wir glauben, dass GT-Modelle eine gute Ergänzung zu bestehenden Ansätzen darstellen, um ökologische Phänomene rigoros zu untersuchen.show moreshow less

Download full text files

  • tbhpi147.pdfeng
    (1724KB)

    SHA-512:b189d99b97fe8f9394afbd4d642064f0104e2cba822e22e08fd860c99c2e250ee8a38636fcd5fef3b9e2f4bb19a3c8cc5bac1206db5ea4edf8f2f813c527901f

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Boris FlottererORCiD, Maria MaximovaORCiDGND, Sven SchneiderGND, Johannes DyckORCiDGND, Christian Zöllner, Holger GieseORCiDGND, Christelle Hély, Cédric Gaucherel
URN:urn:nbn:de:kobv:517-opus4-547643
DOI:https://doi.org/10.25932/publishup-54764
ISBN:978-3-86956-533-0
ISSN:1613-5652
ISSN:2191-1665
Title of parent work (German):Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam
Publication series (Volume number):Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam (147)
Publisher:Universitätsverlag Potsdam
Place of publishing:Potsdam
Publication type:Monograph/Edited Volume
Language:English
Year of first publication:2022
Publication year:2022
Publishing institution:Universität Potsdam
Publishing institution:Universitätsverlag Potsdam
Release date:2022/11/22
Tag:Savanne; Trajektorien; Wüstenbildung; diskretes Ereignismodell; dynamische Systeme; qualitatives Modell
desertification; discrete-event model; dynamic systems; qualitative model; savanna; trajectories
Issue:147
Number of pages:47
RVK - Regensburg classification:ST 230
Organizational units:Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH
DDC classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Publishing method:Universitätsverlag Potsdam
Open Access / Gold Open-Access
Peer review:Nicht ermittelbar
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.