Refine
Year of publication
Document Type
- Monograph/Edited Volume (28)
- Article (16)
- Other (5)
- Postprint (1)
Is part of the Bibliography
- yes (50)
Keywords
- cyber-physical systems (5)
- quantitative analysis (5)
- Modellierung (4)
- probabilistic timed systems (4)
- qualitative Analyse (4)
- qualitative analysis (4)
- quantitative Analyse (4)
- simulation (4)
- Graphtransformationen (3)
- Model Synchronisation (3)
Zum Thema "Quo vadis, Modellierung?" hält Prof. Dr. Holger Giese am 11. Dezember 2008 seine Antrittsvorlesung an der Universität Potsdam. Der Wissenschaftler bekleidet eine Professur für Systemanalyse und Modellierung. Es handelt sich um eine gemeinsame Berufung der Universität Potsdam mit dem Hasso-Plattner- Institut für Softwaresystemtechnik an der Universität Potsdam. Seit den Anfängen der Informatik vollzieht sich die Entwicklung von detaillierten, lösungsorientierten und eher technisch geprägten Modellen hin zu solchen, die immer abstrakter und eher an den Problemen beziehungsweise Anwendungsbereichen orientiert sind. Diese ermöglichen es, die Komplexität heutiger Systeme besser zu beherrschen. Der Einsatz führt in einigen Anwendungsbereichen heute schon zu bedeutend höherer Produktivität und Qualität sowie geringeren Entwicklungszeiten. Anderseits hat sich aber auch in anderen Anwendungsgebieten gezeigt, dass die ständige Anpassung der Software an sich ändernde Anforderungen oder Organisationsstrukturen dazu führt, dass in frühen Entwicklungsphasen entstandene Modelle in der Praxis oft sehr schnell nicht mehr mit der Software übereinstimmen. In seiner Antrittsvorlesung will Holger Giese diese Entwicklung Revue passieren lassen und der Frage nachgehen, was dies für die Zukunft der Modellierung bedeutet, mit welchen aktuellen Ansätzen man diesem Problem zu begegnen versucht und welche zukünftigen Entwicklungen für die Modellierung zu erwarten sind.
The model-driven software development paradigm requires that appropriate model transformations are applicable in different stages of the development process. The transformations have to consistently propagate changes between the different involved models and thus ensure a proper model synchronization. However, most approaches today do not fully support the requirements for model synchronization and focus only on classical one-way batch-oriented transformations. In this paper, we present our approach for an incremental model transformation which supports model synchronization. Our approach employs the visual, formal, and bidirectional transformation technique of triple graph grammars. Using this declarative specification formalism, we focus on the efficient execution of the transformation rules and how to achieve an incremental model transformation for synchronization purposes. We present an evaluation of our approach and demonstrate that due to the speedup for the incremental processing in the average case even larger models can be tackled.
In the world of model-driven engineering (MDE) support for traceability and maintenance of traceability information is essential. On the one hand, classical traceability approaches for MDE address this need by supporting automated creation of traceability information on the model element level. On the other hand, global model management approaches manually capture traceability information on the model level. However, there is currently no approach that supports comprehensive traceability, comprising traceability information on both levels, and efficient maintenance of traceability information, which requires a high-degree of automation and scalability. In this article, we present a comprehensive traceability approach that combines classical traceability approaches for MDE and global model management in form of dynamic hierarchical mega models. We further integrate efficient maintenance of traceability information based on top of dynamic hierarchical mega models. The proposed approach is further outlined by using an industrial case study and by presenting an implementation of the concepts in form of a prototype.
The next generation of advanced mechatronic systems is expected to enhance their functionality and improve their performance by context-dependent behavior. Therefore, these systems require to represent information about their complex environment and changing sets of collaboration partners internally. This requirement is in contrast to the usually assumed static structures of embedded systems. In this paper, we present a model-driven approach which overcomes this situation by supporting dynamic data structures while still guaranteeing that valid worst-case execution times can be derived. It supports a flexible resource manager which avoids to operate with the prohibitive coarse worst-case boundaries but instead supports to run applications in different profiles which guarantee different resource requirements and put unused resources in a profile at other applications' disposal. By supporting the proper estimation of worst case execution time (WCET) and worst case number of iteration (WCNI) at runtime, we can further support to create new profiles, add or remove them at runtime in order to minimize the over-approximation of the resource consumption resulting from the dynamic data structures required for the outlined class of advanced systems.
The correctness of model transformations is a crucial element for model-driven engineering of high-quality software. A prerequisite to verify model transformations at the level of the model transformation specification is that an unambiguous formal semantics exists and that the implementation of the model transformation language adheres to this semantics. However, for existing relational model transformation approaches, it is usually not really clear under which constraints particular implementations really conform to the formal semantics. In this paper, we will bridge this gap for the formal semantics of triple graph grammars (TGG) and an existing efficient implementation. While the formal semantics assumes backtracking and ignores non-determinism, practical implementations do not support backtracking, require rule sets that ensure determinism, and include further optimizations. Therefore, we capture how the considered TGG implementation realizes the transformation by means of operational rules, define required criteria, and show conformance to the formal semantics if these criteria are fulfilled. We further outline how static and runtime checks can be employed to guarantee these criteria.
Advanced mechatronic systems have to integrate existing technologies from mechanical, electrical and software engineering. They must be able to adapt their structure and behavior at runtime by reconfiguration to react flexibly to changes in the environment. Therefore, a tight integration of structural and behavioral models of the different domains is required. This integration results in complex reconfigurable hybrid systems, the execution logic of which cannot be addressed directly with existing standard modeling, simulation, and code-generation techniques. We present in this paper how our component-based approach for reconfigurable mechatronic systems, MECHATRONIC UML, efficiently handles the complex interplay of discrete behavior and continuous behavior in a modular manner. In addition, its extension to even more flexible reconfiguration cases is presented.
The development of self-adaptive software requires the engineering of an adaptation engine that controls the underlying adaptable software by feedback loops. The engine often describes the adaptation by runtime models representing the adaptable software and by activities such as analysis and planning that use these models. To systematically address the interplay between runtime models and adaptation activities, runtime megamodels have been proposed. A runtime megamodel is a specific model capturing runtime models and adaptation activities. In this article, we go one step further and present an executable modeling language for ExecUtable RuntimE MegAmodels (EUREMA) that eases the development of adaptation engines by following a model-driven engineering approach. We provide a domain-specific modeling language and a runtime interpreter for adaptation engines, in particular feedback loops. Megamodels are kept alive at runtime and by interpreting them, they are directly executed to run feedback loops. Additionally, they can be dynamically adjusted to adapt feedback loops. Thus, EUREMA supports development by making feedback loops explicit at a higher level of abstraction and it enables solutions where multiple feedback loops interact or operate on top of each other and self-adaptation co-exists with offline adaptation for evolution.
Various kinds of typed attributed graphs are used to represent states of systems from a broad range of domains. For dynamic systems, established formalisms such as graph transformations provide a formal model for defining state sequences. We consider the extended case where time elapses between states and introduce a logic to reason about these sequences. With this logic we express properties on the structure and attributes of states as well as on the temporal occurrence of states that are related by their inner structure, which no formal logic over graphs accomplishes concisely so far. Firstly, we introduce graphs with history by equipping every graph element with the timestamp of its creation and, if applicable, its deletion. Secondly, we define a logic on graphs by integrating the temporal operator until into the well-established logic of nested graph conditions. Thirdly, we prove that our logic is equally expressive to nested graph conditions by providing a suitable reduction. Finally, the implementation of this reduction allows for the tool-based analysis of metric temporal properties for state sequences.