Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam
ISSN (print) 1613-5652
ISSN (online) 2191-1665
URN urn:nbn:de:kobv:517-series-822
Herausgegeben von den
Professoren des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam
Titel der Reihe bis Nummer 119: Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität Potsdam
Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering (HPI) informieren über laufende Forschungsarbeiten und Projekte der Fachgebiete auf Deutsch und Englisch.
ISSN (online) 2191-1665
URN urn:nbn:de:kobv:517-series-822
Herausgegeben von den
Professoren des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam
Titel der Reihe bis Nummer 119: Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität Potsdam
Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering (HPI) informieren über laufende Forschungsarbeiten und Projekte der Fachgebiete auf Deutsch und Englisch.
Refine
Has Fulltext
- yes (138)
Year of publication
Document Type
- Monograph/Edited Volume (136)
- Conference Proceeding (1)
- Preprint (1)
Language
- English (104)
- German (32)
- Multiple languages (2)
Keywords
- Hasso-Plattner-Institut (9)
- Hasso Plattner Institute (8)
- Forschungskolleg (7)
- Klausurtagung (7)
- Service-oriented Systems Engineering (7)
- cloud computing (7)
- Cloud Computing (6)
- Identitätsmanagement (5)
- cloud (5)
- Forschungsprojekte (4)
144
Digitale Medien sind aus unserem Alltag kaum noch wegzudenken. Einer der zentralsten Bereiche für unsere Gesellschaft, die schulische Bildung, darf hier nicht hintanstehen. Wann immer der Einsatz digital unterstützter Tools pädagogisch sinnvoll ist, muss dieser in einem sicheren Rahmen ermöglicht werden können. Die HPI Schul-Cloud ist dieser Vision gefolgt, die vom Nationalen IT-Gipfel 2016 angestoßen wurde und dem Bericht vorangestellt ist – gefolgt. Sie hat sich in den vergangenen fünf Jahren vom Pilotprojekt zur unverzichtbaren IT-Infrastruktur für zahlreiche Schulen entwickelt. Während der Corona-Pandemie hat sie für viele Tausend Schulen wichtige Unterstützung bei der Umsetzung ihres Bildungsauftrags geboten. Das Ziel, eine zukunftssichere und datenschutzkonforme Infrastruktur zur digitalen Unterstützung des Unterrichts zur Verfügung zu stellen, hat sie damit mehr als erreicht. Aktuell greifen rund 1,4 Millionen Lehrkräfte und Schülerinnen und Schüler bundesweit und an den deutschen Auslandsschulen auf die HPI Schul-Cloud zu.
139
In recent years, computer vision algorithms based on machine learning have seen rapid development. In the past, research mostly focused on solving computer vision problems such as image classification or object detection on images displaying natural scenes. Nowadays other fields such as the field of cultural heritage, where an abundance of data is available, also get into the focus of research. In the line of current research endeavours, we collaborated with the Getty Research Institute which provided us with a challenging dataset, containing images of paintings and drawings. In this technical report, we present the results of the seminar "Deep Learning for Computer Vision". In this seminar, students of the Hasso Plattner Institute evaluated state-of-the-art approaches for image classification, object detection and image recognition on the dataset of the Getty Research Institute. The main challenge when applying modern computer vision methods to the available data is the availability of annotated training data, as the dataset provided by the Getty Research Institute does not contain a sufficient amount of annotated samples for the training of deep neural networks. However, throughout the report we show that it is possible to achieve satisfying to very good results, when using further publicly available datasets, such as the WikiArt dataset, for the training of machine learning models.
137
Crochet is a popular handcraft all over the world. While other techniques such as knitting or weaving have received technical support over the years through machines, crochet is still a purely manual craft. Not just the act of crochet itself is manual but also the process of creating instructions for new crochet patterns, which is barely supported by domain specific digital solutions. This leads to unstructured and often also ambiguous and erroneous pattern instructions. In this report, we propose a concept to digitally represent crochet patterns. This format incorporates crochet techniques which allows domain specific support for crochet pattern designers during the pattern creation and instruction writing process. As contributions, we present a thorough domain analysis, the concept of a graph structure used as domain specific language to specify crochet patterns and a prototype of a projectional editor using the graph as representation format of patterns and a diagramming system to visualize them in 2D and 3D. By analyzing the domain, we learned about crochet techniques and pain points of designers in their pattern creation workflow. These insights are the basis on which we defined the pattern representation. In order to evaluate our concept, we built a prototype by which the feasibility of the concept is shown and we tested the software with professional crochet designers who approved of the concept.
136
The noble way to substantiate decisions that affect many people is to ask these people for their opinions. For governments that run whole countries, this means asking all citizens for their views to consider their situations and needs.
Organizations such as Africa's Voices Foundation, who want to facilitate communication between decision-makers and citizens of a country, have difficulty mediating between these groups. To enable understanding, statements need to be summarized and visualized. Accomplishing these goals in a way that does justice to the citizens' voices and situations proves challenging. Standard charts do not help this cause as they fail to create empathy for the people behind their graphical abstractions. Furthermore, these charts do not create trust in the data they are representing as there is no way to see or navigate back to the underlying code and the original data. To fulfill these functions, visualizations would highly benefit from interactions to explore the displayed data, which standard charts often only limitedly provide.
To help improve the understanding of people's voices, we developed and categorized 80 ideas for new visualizations, new interactions, and better connections between different charts, which we present in this report. From those ideas, we implemented 10 prototypes and two systems that integrate different visualizations. We show that this integration allows consistent appearance and behavior of visualizations. The visualizations all share the same main concept: representing each individual with a single dot. To realize this idea, we discuss technologies that efficiently allow the rendering of a large number of these dots. With these visualizations, direct interactions with representations of individuals are achievable by clicking on them or by dragging a selection around them. This direct interaction is only possible with a bidirectional connection from the visualization to the data it displays. We discuss different strategies for bidirectional mappings and the trade-offs involved. Having unified behavior across visualizations enhances exploration. For our prototypes, that includes grouping, filtering, highlighting, and coloring of dots. Our prototyping work was enabled by the development environment Lively4. We explain which parts of Lively4 facilitated our prototyping process. Finally, we evaluate our approach to domain problems and our developed visualization concepts.
Our work provides inspiration and a starting point for visualization development in this domain. Our visualizations can improve communication between citizens and their government and motivate empathetic decisions. Our approach, combining low-level entities to create visualizations, provides value to an explorative and empathetic workflow. We show that the design space for visualizing this kind of data has a lot of potential and that it is possible to combine qualitative and quantitative approaches to data analysis.
135
Language developers who design domain-specific languages or new language features need a way to make fast changes to language definitions. Those fast changes require immediate feedback. Also, it should be possible to parse the developed languages quickly to handle extensive sets of code.
Parsing expression grammars provides an easy to understand method for language definitions. Packrat parsing is a method to parse grammars of this kind, but this method is unable to handle left-recursion properly. Existing solutions either partially rewrite left-recursive rules and partly forbid them, or use complex extensions to packrat parsing that are hard to understand and cost-intensive. We investigated methods to make parsing as fast as possible, using easy to follow algorithms while not losing the ability to make fast changes to grammars.
We focused our efforts on two approaches.
One is to start from an existing technique for limited left-recursion rewriting and enhance it to work for general left-recursive grammars. The second approach is to design a grammar compilation process to find left-recursion before parsing, and in this way, reduce computational costs wherever possible and generate ready to use parser classes.
Rewriting parsing expression grammars is a task that, if done in a general way, unveils a large number of cases such that any rewriting algorithm surpasses the complexity of other left-recursive parsing algorithms. Lookahead operators introduce this complexity. However, most languages have only little portions that are left-recursive and in virtually all cases, have no indirect or hidden left-recursion. This means that the distinction of left-recursive parts of grammars from components that are non-left-recursive holds great improvement potential for existing parsers.
In this report, we list all the required steps for grammar rewriting to handle left-recursion, including grammar analysis, grammar rewriting itself, and syntax tree restructuring. Also, we describe the implementation of a parsing expression grammar framework in Squeak/Smalltalk and the possible interactions with the already existing parser Ohm/S. We quantitatively benchmarked this framework directing our focus on parsing time and the ability to use it in a live programming context. Compared with Ohm, we achieved massive parsing time improvements while preserving the ability to use our parser it as a live programming tool.
The work is essential because, for one, we outlined the difficulties and complexity that come with grammar rewriting. Also, we removed the existing limitations that came with left-recursion by eliminating them before parsing.
134
The formal modeling and analysis is of crucial importance for software development processes following the model based approach. We present the formalism of Interval Probabilistic Timed Graph Transformation Systems (IPTGTSs) as a high-level modeling language. This language supports structure dynamics (based on graph transformation), timed behavior (based on clocks, guards, resets, and invariants as in Timed Automata (TA)), and interval probabilistic behavior (based on Discrete Interval Probability Distributions). That is, for the probabilistic behavior, the modeler using IPTGTSs does not need to provide precise probabilities, which are often impossible to obtain, but rather provides a probability range instead from which a precise probability is chosen nondeterministically. In fact, this feature on capturing probabilistic behavior distinguishes IPTGTSs from Probabilistic Timed Graph Transformation Systems (PTGTSs) presented earlier.
Following earlier work on Interval Probabilistic Timed Automata (IPTA) and PTGTSs, we also provide an analysis tool chain for IPTGTSs based on inter-formalism transformations. In particular, we provide in our tool AutoGraph a translation of IPTGTSs to IPTA and rely on a mapping of IPTA to Probabilistic Timed Automata (PTA) to allow for the usage of the Prism model checker. The tool Prism can then be used to analyze the resulting PTA w.r.t. probabilistic real-time queries asking for worst-case and best-case probabilities to reach a certain set of target states in a given amount of time.
133
The analysis of behavioral models is of high importance for cyber-physical systems, as the systems often encompass complex behavior based on e.g. concurrent components with mutual exclusion or probabilistic failures on demand. The rule-based formalism of probabilistic timed graph transformation systems is a suitable choice when the models representing states of the system can be understood as graphs and timed and probabilistic behavior is important. However, model checking PTGTSs is limited to systems with rather small state spaces.
We present an approach for the analysis of large scale systems modeled as probabilistic timed graph transformation systems by systematically decomposing their state spaces into manageable fragments. To obtain qualitative and quantitative analysis results for a large scale system, we verify that results obtained for its fragments serve as overapproximations for the corresponding results of the large scale system. Hence, our approach allows for the detection of violations of qualitative and quantitative safety properties for the large scale system under analysis. We consider a running example in which we model shuttles driving on tracks of a large scale topology and for which we verify that shuttles never collide and are unlikely to execute emergency brakes. In our evaluation, we apply an implementation of our approach to the running example.
132
SandBlocks
(2020)
Visuelle Programmiersprachen werden heutzutage zugunsten textueller Programmiersprachen nahezu nicht verwendet, obwohl visuelle Programmiersprachen einige Vorteile bieten. Diese reichen von der Vermeidung von Syntaxfehlern, über die Nutzung konkreter domänenspezifischer Notation bis hin zu besserer Lesbarkeit und Wartbarkeit des Programms. Trotzdem greifen professionelle Softwareentwickler nahezu ausschließlich auf textuelle Programmiersprachen zurück.
Damit Entwickler diese Vorteile visueller Programmiersprachen nutzen können, aber trotzdem nicht auf die ihnen bekannten textuellen Programmiersprachen verzichten müssen, gibt es die Idee, textuelle und visuelle Programmelemente gemeinsam in einer Programmiersprache nutzbar zu machen. Damit ist dem Entwickler überlassen wann und wie er visuelle Elemente in seinem Programmcode verwendet.
Diese Arbeit stellt das SandBlocks-Framework vor, das diese gemeinsame Nutzung visueller und textueller Programmelemente ermöglicht. Neben einer Auswertung visueller Programmiersprachen, zeigt es die technische Integration visueller Programmelemente in das Squeak/Smalltalk-System auf, gibt Einblicke in die Umsetzung und Verwendung in Live-Programmiersystemen und diskutiert ihre Verwendung in unterschiedlichen Domänen.
130
The “HPI Future SOC Lab” is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners.
The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies.
This technical report presents results of research projects executed in 2017. Selected projects have presented their results on April 25th and November 15th 2017 at the Future SOC Lab Day events.