Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam
ISSN (print) 1613-5652
ISSN (online) 2191-1665
URN urn:nbn:de:kobv:517-series-822
Herausgegeben von den
Professoren des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam
Titel der Reihe bis Nummer 119: Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität Potsdam
Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering (HPI) informieren über laufende Forschungsarbeiten und Projekte der Fachgebiete auf Deutsch und Englisch.
ISSN (online) 2191-1665
URN urn:nbn:de:kobv:517-series-822
Herausgegeben von den
Professoren des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam
Titel der Reihe bis Nummer 119: Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität Potsdam
Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering (HPI) informieren über laufende Forschungsarbeiten und Projekte der Fachgebiete auf Deutsch und Englisch.
Refine
Has Fulltext
- yes (146)
Year of publication
Document Type
- Monograph/Edited Volume (144)
- Conference Proceeding (1)
- Preprint (1)
Language
- English (111)
- German (33)
- Multiple languages (2)
Keywords
- Hasso-Plattner-Institut (9)
- Hasso Plattner Institute (8)
- Forschungskolleg (7)
- Klausurtagung (7)
- Service-oriented Systems Engineering (7)
- cloud computing (7)
- Cloud Computing (6)
- Identitätsmanagement (5)
- cloud (5)
- cyber-physical systems (5)
150
openHPI
(2022)
Anlässlich des 10-jährigen Jubiläums von openHPI informiert dieser technische Bericht über die HPI-MOOC-Plattform einschließlich ihrer Kernfunktionen, Technologie und Architektur.
In einer Einleitung wird die Plattformfamilie mit allen Partnerplattformen vorgestellt; diese belaufen sich inklusive openHPI aktuell auf neun Plattformen. In diesem Abschnitt wird außerdem gezeigt, wie openHPI als Berater und Forschungspartner in verschiedenen Projekten fungiert.
Im zweiten Kapitel werden die Funktionalitäten und gängigen Kursformate der Plattform präsentiert. Die Funktionalitäten sind in Lerner- und Admin-Funktionen unterteilt. Der Bereich Lernerfunktionen bietet detaillierte Informationen zu Leistungsnachweisen, Kursen und den Lernmaterialien, aus denen sich ein Kurs zusammensetzt: Videos, Texte und Quiz. Darüber hinaus können die Lernmaterialien durch externe Übungstools angereichert werden, die über den Standard Learning Tools Interoperability (LTI) mit der HPI MOOC-Plattform kommunizieren. Das Konzept der Peer-Assessments rundet die möglichen Lernmaterialien ab.
Der Abschnitt geht dann weiter auf das Diskussionsforum ein, das einen grundlegenden Unterschied von MOOCs im Vergleich zu traditionellen E-Learning-Angeboten darstellt. Zum Abschluss des Abschnitts folgen eine Beschreibung von Quiz-Recap, Lernzielen, mobilen Anwendungen, spielerischen Lernens und dem Helpdesk.
Der nächste Teil dieses Kapitels beschäftigt sich mit den Admin-Funktionen. Die Funktionalitätsbeschreibung beschränkt sich Neuigkeiten und Ankündigungen, Dashboards und Statistiken, Berichtsfunktionen, Forschungsoptionen mit A/B-Tests, den Kurs-Feed und das TransPipe-Tool zur Unterstützung beim Erstellen von automatischen oder manuellen Untertiteln. Die Plattform unterstützt außerdem eine Vielzahl zusätzlicher Funktionen, doch eine detaillierte Beschreibung dieser Funktionen würde den Rahmen des Berichts sprengen.
Das Kapitel geht dann auf gängige Kursformate und openHPI-Lehrveranstaltungen am HPI ein, bevor es mit einigen Best Practices für die Gestaltung und Durchführung von Kursen schließt.
Zum Abschluss des technischen Berichts gibt das letzte Kapitel eine Zusammenfassung und einen Ausblick auf die Zukunft der digitalen Bildung.
Ein besonderes Merkmal des openHPI-Projekts ist die bewusste Entscheidung, die komplette Anwendung von den physischen Netzwerkkomponenten bis zur Plattformentwicklung eigenständig zu betreiben. Bei der vorliegenden deutschen Variante handelt es sich um eine gekürzte Übersetzung des technischen Berichts 148, bei der kein Einblick in die Technologien und Architektur von openHPI gegeben wird. Interessierte Leser:innen können im technischen Bericht 148 (vollständige englische Version) detaillierte Informationen zum Rechenzentrum und den Geräten, der Cloud-Software und dem openHPI Cloud Service aber auch zu Infrastruktur-Anwendungskomponenten wie Entwicklungstools, Automatisierung, Deployment-Pipeline und Monitoring erhalten. Außerdem finden sich dort weitere Informationen über den Technologiestack und konkrete Implementierungsdetails der Plattform inklusive der serviceorientierten Ruby on Rails-Anwendung, die Kommunikation zwischen den Diensten, öffentliche APIs, sowie Designsystem und -komponenten. Der Abschnitt schließt mit einer Diskussion über die ursprüngliche Microservice-Architektur und die Migration zu einer monolithischen Anwendung.
148
openHPI
(2022)
On the occasion of the 10th openHPI anniversary, this technical report provides information about the HPI MOOC platform, including its core features, technology, and architecture.
In an introduction, the platform family with all partner platforms is presented; these now amount to nine platforms, including openHPI. This section introduces openHPI as an advisor and research partner in various projects.
In the second chapter, the functionalities and common course formats of the platform are presented. The functionalities are divided into learner and admin features. The learner features section provides detailed information about performance records, courses, and the learning materials of which a course is composed: videos, texts, and quizzes. In addition, the learning materials can be enriched by adding external exercise tools that communicate with the HPI MOOC platform via the Learning Tools Interoperability (LTI) standard. Furthermore, the concept of peer assessments completed the possible learning materials.
The section then proceeds with further information on the discussion forum, a fundamental concept of MOOCs compared to traditional e-learning offers. The section is concluded with a description of the quiz recap, learning objectives, mobile applications, gameful learning, and the help desk.
The next part of this chapter deals with the admin features. The described functionality is restricted to describing the news and announcements, dashboards and statistics, reporting capabilities, research options with A/B testing, the course feed, and the TransPipe tool to support the process of creating automated or manual subtitles. The platform supports a large variety of additional features, but a detailed description of these features goes beyond the scope of this report.
The chapter then elaborates on common course formats and openHPI teaching activities at the HPI. The chapter concludes with some best practices for course design and delivery.
The third chapter provides insights into the technology and architecture behind openHPI. A special characteristic of the openHPI project is the conscious decision to operate the complete application from bare metal to platform development. Hence, the chapter starts with a section about the openHPI Cloud, including detailed information about the data center and devices, the used cloud software OpenStack and Ceph, as well as the openHPI Cloud Service provided for the HPI.
Afterward, a section on the application technology stack and development tooling describes the application infrastructure components, the used automation, the deployment pipeline, and the tools used for monitoring and alerting. The chapter is concluded with detailed information about the technology stack and concrete platform implementation details. The section describes the service-oriented Ruby on Rails application, inter-service communication, and public APIs. It also provides more information on the design system and components used in the application. The section concludes with a discussion of the original microservice architecture, where we share our insights and reasoning for migrating back to a monolithic application.
The last chapter provides a summary and an outlook on the future of digital education.
147
Modeling and Formal Analysis of Meta-Ecosystems with Dynamic Structure using Graph Transformation
(2022)
The dynamics of ecosystems is of crucial importance. Various model-based approaches exist to understand and analyze their internal effects. In this paper, we model the space structure dynamics and ecological dynamics of meta-ecosystems using the formal technique of Graph Transformation (short GT). We build GT models to describe how a meta-ecosystem (modeled as a graph) can evolve over time (modeled by GT rules) and to analyze these GT models with respect to qualitative properties such as the existence of structural stabilities. As a case study, we build three GT models describing the space structure dynamics and ecological dynamics of three different savanna meta-ecosystems. The first GT model considers a savanna meta-ecosystem that is limited in space to two ecosystem patches, whereas the other two GT models consider two savanna meta-ecosystems that are unlimited in the number of ecosystem patches and only differ in one GT rule describing how the space structure of the meta-ecosystem grows. In the first two GT models, the space structure dynamics and ecological dynamics of the meta-ecosystem shows two main structural stabilities: the first one based on grassland-savanna-woodland transitions and the second one based on grassland-desert transitions. The transition between these two structural stabilities is driven by high-intensity fires affecting the tree components. In the third GT model, the GT rule for savanna regeneration induces desertification and therefore a collapse of the meta-ecosystem. We believe that GT models provide a complementary avenue to that of existing approaches to rigorously study ecological phenomena.
146
Cyber-physical systems often encompass complex concurrent behavior with timing constraints and probabilistic failures on demand. The analysis whether such systems with probabilistic timed behavior adhere to a given specification is essential. When the states of the system can be represented by graphs, the rule-based formalism of Probabilistic Timed Graph Transformation Systems (PTGTSs) can be used to suitably capture structure dynamics as well as probabilistic and timed behavior of the system. The model checking support for PTGTSs w.r.t. properties specified using Probabilistic Timed Computation Tree Logic (PTCTL) has been already presented. Moreover, for timed graph-based runtime monitoring, Metric Temporal Graph Logic (MTGL) has been developed for stating metric temporal properties on identified subgraphs and their structural changes over time.
In this paper, we (a) extend MTGL to the Probabilistic Metric Temporal Graph Logic (PMTGL) by allowing for the specification of probabilistic properties, (b) adapt our MTGL satisfaction checking approach to PTGTSs, and (c) combine the approaches for PTCTL model checking and MTGL satisfaction checking to obtain a Bounded Model Checking (BMC) approach for PMTGL. In our evaluation, we apply an implementation of our BMC approach in AutoGraph to a running example.
145
Learning from failure
(2022)
Regression testing is a widespread practice in today's software industry to ensure software product quality. Developers derive a set of test cases, and execute them frequently to ensure that their change did not adversely affect existing functionality. As the software product and its test suite grow, the time to feedback during regression test sessions increases, and impedes programmer productivity: developers wait longer for tests to complete, and delays in fault detection render fault removal increasingly difficult.
Test case prioritization addresses the problem of long feedback loops by reordering test cases, such that test cases of high failure probability run first, and test case failures become actionable early in the testing process. We ask, given test execution schedules reconstructed from publicly available data, to which extent can their fault detection efficiency improved, and which technique yields the most efficient test schedules with respect to APFD?
To this end, we recover regression 6200 test sessions from the build log files of Travis CI, a popular continuous integration service, and gather 62000 accompanying changelists. We evaluate the efficiency of current test schedules, and examine the prioritization results of state-of-the-art lightweight, history-based heuristics. We propose and evaluate a novel set of prioritization algorithms, which connect software changes and test failures in a matrix-like data structure.
Our studies indicate that the optimization potential is substantial, because the existing test plans score only 30% APFD. The predictive power of past test failures proves to be outstanding: simple heuristics, such as repeating tests with failures in recent sessions, result in efficiency scores of 95% APFD. The best-performing matrix-based heuristic achieves a similar score of 92.5% APFD. In contrast to prior approaches, we argue that matrix-based techniques are useful beyond the scope of effective prioritization, and enable a number of use cases involving software maintenance.
We validate our findings from continuous integration processes by extending a continuous testing tool within development environments with means of test prioritization, and pose further research questions. We think that our findings are suited to propel adoption of (continuous) testing practices, and that programmers' toolboxes should contain test prioritization as an existential productivity tool.
144
Digitale Medien sind aus unserem Alltag kaum noch wegzudenken. Einer der zentralsten Bereiche für unsere Gesellschaft, die schulische Bildung, darf hier nicht hintanstehen. Wann immer der Einsatz digital unterstützter Tools pädagogisch sinnvoll ist, muss dieser in einem sicheren Rahmen ermöglicht werden können. Die HPI Schul-Cloud ist dieser Vision gefolgt, die vom Nationalen IT-Gipfel 2016 angestoßen wurde und dem Bericht vorangestellt ist – gefolgt. Sie hat sich in den vergangenen fünf Jahren vom Pilotprojekt zur unverzichtbaren IT-Infrastruktur für zahlreiche Schulen entwickelt. Während der Corona-Pandemie hat sie für viele Tausend Schulen wichtige Unterstützung bei der Umsetzung ihres Bildungsauftrags geboten. Das Ziel, eine zukunftssichere und datenschutzkonforme Infrastruktur zur digitalen Unterstützung des Unterrichts zur Verfügung zu stellen, hat sie damit mehr als erreicht. Aktuell greifen rund 1,4 Millionen Lehrkräfte und Schülerinnen und Schüler bundesweit und an den deutschen Auslandsschulen auf die HPI Schul-Cloud zu.
143
The analysis of behavioral models such as Graph Transformation Systems (GTSs) is of central importance in model-driven engineering. However, GTSs often result in intractably large or even infinite state spaces and may be equipped with multiple or even infinitely many start graphs. To mitigate these problems, static analysis techniques based on finite symbolic representations of sets of states or paths thereof have been devised. We focus on the technique of k-induction for establishing invariants specified using graph conditions. To this end, k-induction generates symbolic paths backwards from a symbolic state representing a violation of a candidate invariant to gather information on how that violation could have been reached possibly obtaining contradictions to assumed invariants. However, GTSs where multiple agents regularly perform actions independently from each other cannot be analyzed using this technique as of now as the independence among backward steps may prevent the gathering of relevant knowledge altogether.
In this paper, we extend k-induction to GTSs with multiple agents thereby supporting a wide range of additional GTSs. As a running example, we consider an unbounded number of shuttles driving on a large-scale track topology, which adjust their velocity to speed limits to avoid derailing. As central contribution, we develop pruning techniques based on causality and independence among backward steps and verify that k-induction remains sound under this adaptation as well as terminates in cases where it did not terminate before.
141
Scrollytellings are an innovative form of web content. Combining the benefits of books, images, movies, and video games, they are a tool to tell compelling stories and provide excellent learning opportunities. Due to their multi-modality, creating high-quality scrollytellings is not an easy task. Different professions, such as content designers, graphics designers, and developers, need to collaborate to get the best out of the possibilities the scrollytelling format provides. Collaboration unlocks great potential. However, content designers cannot create scrollytellings directly and always need to consult with developers to implement their vision. This can result in misunderstandings. Often, the resulting scrollytelling will not match the designer’s vision sufficiently, causing unnecessary iterations. Our project partner Typeshift specializes in the creation of individualized scrollytellings for their clients. Examined existing solutions for authoring interactive content are not optimally suited for creating highly customized scrollytellings while still being able to manipulate all their elements programmatically. Based on their experience and expertise, we developed an editor to author scrollytellings in the lively.next live-programming environment. In this environment, a graphical user interface for content design is combined with powerful possibilities for programming behavior with the morphic system. The editor allows content designers to take on large parts of the creation process of scrollytellings on their own, such as creating the visible elements, animating content, and fine-tuning the scrollytelling. Hence, developers can focus on interactive elements such as simulations and games. Together with Typeshift, we evaluated the tool by recreating an existing scrollytelling and identified possible future enhancements. Our editor streamlines the creation process of scrollytellings. Content designers and developers can now both work on the same scrollytelling. Due to the editor inside of the lively.next environment, they can both work with a set of tools familiar to them and their traits. Thus, we mitigate unnecessary iterations and misunderstandings by enabling content designers to realize large parts of their vision of a scrollytelling on their own. Developers can add advanced and individual behavior. Thus, developers and content designers benefit from a clearer distribution of tasks while keeping the benefits of collaboration.
140
Cyber-physical systems often encompass complex concurrent behavior with timing constraints and probabilistic failures on demand. The analysis whether such systems with probabilistic timed behavior adhere to a given specification is essential. When the states of the system can be represented by graphs, the rule-based formalism of Probabilistic Timed Graph Transformation Systems (PTGTSs) can be used to suitably capture structure dynamics as well as probabilistic and timed behavior of the system. The model checking support for PTGTSs w.r.t. properties specified using Probabilistic Timed Computation Tree Logic (PTCTL) has been already presented. Moreover, for timed graph-based runtime monitoring, Metric Temporal Graph Logic (MTGL) has been developed for stating metric temporal properties on identified subgraphs and their structural changes over time. In this paper, we (a) extend MTGL to the Probabilistic Metric Temporal Graph Logic (PMTGL) by allowing for the specification of probabilistic properties, (b) adapt our MTGL satisfaction checking approach to PTGTSs, and (c) combine the approaches for PTCTL model checking and MTGL satisfaction checking to obtain a Bounded Model Checking (BMC) approach for PMTGL. In our evaluation, we apply an implementation of our BMC approach in AutoGraph to a running example.
139
In recent years, computer vision algorithms based on machine learning have seen rapid development. In the past, research mostly focused on solving computer vision problems such as image classification or object detection on images displaying natural scenes. Nowadays other fields such as the field of cultural heritage, where an abundance of data is available, also get into the focus of research. In the line of current research endeavours, we collaborated with the Getty Research Institute which provided us with a challenging dataset, containing images of paintings and drawings. In this technical report, we present the results of the seminar "Deep Learning for Computer Vision". In this seminar, students of the Hasso Plattner Institute evaluated state-of-the-art approaches for image classification, object detection and image recognition on the dataset of the Getty Research Institute. The main challenge when applying modern computer vision methods to the available data is the availability of annotated training data, as the dataset provided by the Getty Research Institute does not contain a sufficient amount of annotated samples for the training of deep neural networks. However, throughout the report we show that it is possible to achieve satisfying to very good results, when using further publicly available datasets, such as the WikiArt dataset, for the training of machine learning models.