Hasso-Plattner-Institut für Digital Engineering GmbH
Refine
Year of publication
Document Type
- Article (99)
- Doctoral Thesis (86)
- Other (83)
- Monograph/Edited Volume (39)
- Postprint (20)
- Conference Proceeding (3)
- Habilitation Thesis (1)
- Report (1)
Keywords
- machine learning (16)
- MOOC (9)
- maschinelles Lernen (7)
- E-Learning (6)
- deep learning (6)
- Cloud Computing (5)
- Smalltalk (5)
- digital education (5)
- evaluation (5)
- 3D printing (4)
Patent document collections are an immense source of knowledge for research and innovation communities worldwide. The rapid growth of the number of patent documents poses an enormous challenge for retrieving and analyzing information from this source in an effective manner. Based on deep learning methods for natural language processing, novel approaches have been developed in the field of patent analysis. The goal of these approaches is to reduce costs by automating tasks that previously only domain experts could solve. In this article, we provide a comprehensive survey of the application of deep learning for patent analysis. We summarize the state-of-the-art techniques and describe how they are applied to various tasks in the patent domain. In a detailed discussion, we categorize 40 papers based on the dataset, the representation, and the deep learning architecture that were used, as well as the patent analysis task that was targeted. With our survey, we aim to foster future research at the intersection of patent analysis and deep learning and we conclude by listing promising paths for future work.
This technical report presents the results of student projects which were prepared during the lecture “Operating Systems II” offered by the “Operating Systems and Middleware” group at HPI in the Summer term of 2020. The lecture covered ad- vanced aspects of operating system implementation and architecture on topics such as Virtualization, File Systems and Input/Output Systems. In addition to attending the lecture, the participating students were encouraged to gather practical experience by completing a project on a closely related topic over the course of the semester. The results of 10 selected exceptional projects are covered in this report.
The students have completed hands-on projects on the topics of Operating System Design Concepts and Implementation, Hardware/Software Co-Design, Reverse Engineering, Quantum Computing, Static Source-Code Analysis, Operating Systems History, Application Binary Formats and more. It should be recognized that over the course of the semester all of these projects have achieved outstanding results which went far beyond the scope and the expec- tations of the lecture, and we would like to thank all participating students for their commitment and their effort in completing their respective projects, as well as their work on compiling this report.
In discrete manufacturing, the knowledge about causal relationships makes it possible to avoid unforeseen production downtimes by identifying their root causes. Learning causal structures from real-world settings remains challenging due to high-dimensional data, a mix of discrete and continuous variables, and requirements for preprocessing log data under the causal perspective. In our work, we address these challenges proposing a process for causal reasoning based on raw machine log data from production monitoring. Within this process, we define a set of transformation rules to extract independent and identically distributed observations. Further, we incorporate a variable selection step to handle high-dimensionality and a discretization step to include continuous variables. We enrich a commonly used causal structure learning algorithm with domain-related orientation rules, which provides a basis for causal reasoning. We demonstrate the process on a real-world dataset from a globally operating precision mechanical engineering company. The dataset contains over 40 million log data entries from production monitoring of a single machine. In this context, we determine the causal structures embedded in operational processes. Further, we examine causal effects to support machine operators in avoiding unforeseen production stops, i.e., by detaining machine operators from drawing false conclusions on impacting factors of unforeseen production stops based on experience.
Digital technology offers significant political, economic, and societal opportunities. At the same time, the notion of digital sovereignty has become a leitmotif in German discourse: the state’s capacity to assume its responsibilities and safeguard society’s – and individuals’ – ability to shape the digital transformation in a self-determined way. The education sector is exemplary for the challenge faced by Germany, and indeed Europe, of harnessing the benefits of digital technology while navigating concerns around sovereignty. It encompasses education as a core public good, a rapidly growing field of business, and growing pools of highly sensitive personal data. The report describes pathways to mitigating the tension between digitalization and sovereignty at three different levels – state, economy, and individual – through the lens of concrete technical projects in the education sector: the HPI Schul-Cloud (state sovereignty), the MERLOT data spaces (economic sovereignty), and the openHPI platform (individual sovereignty).
The Security Operations Center (SOC) represents a specialized unit responsible for managing security within enterprises. To aid in its responsibilities, the SOC relies heavily on a Security Information and Event Management (SIEM) system that functions as a centralized repository for all security-related data, providing a comprehensive view of the organization's security posture. Due to the ability to offer such insights, SIEMS are considered indispensable tools facilitating SOC functions, such as monitoring, threat detection, and incident response.
Despite advancements in big data architectures and analytics, most SIEMs fall short of keeping pace. Architecturally, they function merely as log search engines, lacking the support for distributed large-scale analytics. Analytically, they rely on rule-based correlation, neglecting the adoption of more advanced data science and machine learning techniques.
This thesis first proposes a blueprint for next-generation SIEM systems that emphasize distributed processing and multi-layered storage to enable data mining at a big data scale. Next, with the architectural support, it introduces two data mining approaches for advanced threat detection as part of SOC operations.
First, a novel graph mining technique that formulates threat detection within the SIEM system as a large-scale graph mining and inference problem, built on the principles of guilt-by-association and exempt-by-reputation. The approach entails the construction of a Heterogeneous Information Network (HIN) that models shared characteristics and associations among entities extracted from SIEM-related events/logs. Thereon, a novel graph-based inference algorithm is used to infer a node's maliciousness score based on its associations with other entities in the HIN. Second, an innovative outlier detection technique that imitates a SOC analyst's reasoning process to find anomalies/outliers. The approach emphasizes explainability and simplicity, achieved by combining the output of simple context-aware univariate submodels that calculate an outlier score for each entry.
Both approaches were tested in academic and real-world settings, demonstrating high performance when compared to other algorithms as well as practicality alongside a large enterprise's SIEM system.
This thesis establishes the foundation for next-generation SIEM systems that can enhance today's SOCs and facilitate the transition from human-centric to data-driven security operations.
RHEEMix in the data jungle
(2020)
Data analytics are moving beyond the limits of a single platform. In this paper, we present the cost-based optimizer of Rheem, an open-source cross-platform system that copes with these new requirements. The optimizer allocates the subtasks of data analytic tasks to the most suitable platforms. Our main contributions are: (i) a mechanism based on graph transformations to explore alternative execution strategies; (ii) a novel graph-based approach to determine efficient data movement plans among subtasks and platforms; and (iii) an efficient plan enumeration algorithm, based on a novel enumeration algebra. We extensively evaluate our optimizer under diverse real tasks. We show that our optimizer can perform tasks more than one order of magnitude faster when using multiple platforms than when using a single platform.
Knowledge graphs are structured repositories of knowledge that store facts
about the general world or a particular domain in terms of entities and
their relationships. Owing to the heterogeneity of use cases that are served
by them, there arises a need for the automated construction of domain-
specific knowledge graphs from texts. While there have been many research
efforts towards open information extraction for automated knowledge graph
construction, these techniques do not perform well in domain-specific settings.
Furthermore, regardless of whether they are constructed automatically from
specific texts or based on real-world facts that are constantly evolving, all
knowledge graphs inherently suffer from incompleteness as well as errors in
the information they hold.
This thesis investigates the challenges encountered during knowledge graph
construction and proposes techniques for their curation (a.k.a. refinement)
including the correction of semantic ambiguities and the completion of missing
facts. Firstly, we leverage existing approaches for the automatic construction
of a knowledge graph in the art domain with open information extraction
techniques and analyse their limitations. In particular, we focus on the
challenging task of named entity recognition for artwork titles and show
empirical evidence of performance improvement with our proposed solution
for the generation of annotated training data.
Towards the curation of existing knowledge graphs, we identify the issue of
polysemous relations that represent different semantics based on the context.
Having concrete semantics for relations is important for downstream appli-
cations (e.g. question answering) that are supported by knowledge graphs.
Therefore, we define the novel task of finding fine-grained relation semantics
in knowledge graphs and propose FineGReS, a data-driven technique that
discovers potential sub-relations with fine-grained meaning from existing pol-
ysemous relations. We leverage knowledge representation learning methods
that generate low-dimensional vectors (or embeddings) for knowledge graphs
to capture their semantics and structure. The efficacy and utility of the
proposed technique are demonstrated by comparing it with several baselines
on the entity classification use case.
Further, we explore the semantic representations in knowledge graph embed-
ding models. In the past decade, these models have shown state-of-the-art
results for the task of link prediction in the context of knowledge graph comple-
tion. In view of the popularity and widespread application of the embedding
techniques not only for link prediction but also for different semantic tasks,
this thesis presents a critical analysis of the embeddings by quantitatively
measuring their semantic capabilities. We investigate and discuss the reasons
for the shortcomings of embeddings in terms of the characteristics of the
underlying knowledge graph datasets and the training techniques used by
popular models.
Following up on this, we propose ReasonKGE, a novel method for generating
semantically enriched knowledge graph embeddings by taking into account the
semantics of the facts that are encapsulated by an ontology accompanying the
knowledge graph. With a targeted, reasoning-based method for generating
negative samples during the training of the models, ReasonKGE is able to
not only enhance the link prediction performance, but also reduce the number
of semantically inconsistent predictions made by the resultant embeddings,
thus improving the quality of knowledge graphs.
EMOOCs 2023
(2023)
From June 14 to June 16, 2023, Hasso Plattner Institute, Potsdam, hosted the eighth European MOOC Stakeholder Summit (EMOOCs 2023).
The pandemic is fortunately over. It has once again shown how important digital education is. How well-prepared a country was could be seen in our schools, universities, and companies. In different countries, the problems manifested themselves differently. The measures and approaches to solving the problems varied accordingly. Digital education, whether micro-credentials, MOOCs, blended learning formats, or other e-learning tools, received a major boost.
EMOOCs 2023 focusses on the effects of this emergency situation. How has it affected the development and delivery of MOOCs and other e-learning offerings all over Europe? Which projects can serve as models for successful digital learning and teaching? Which roles can MOOCs and micro-credentials bear in the current business transformation? Is there a backlash to the routine we knew from pre-Corona times? Or have many things become firmly established in the meantime, e.g. remote work, hybrid conferences, etc.?
Furthermore, EMOOCs 2023 has a closer look at the development and formalization of digital learning. Micro-credentials are just the starting point. Further steps in this direction would be complete online study programs or full online universities.
Another main topic is the networking of learning offers and the standardization of formats and metadata. Examples of fruitful cooperations are the MOOChub, the European MOOC Consortium, and the Common Micro-Credential Framework.
The learnings, derived from practical experience and research, are explored in EMOOCs 2023 in four tracks and additional workshops, covering various aspects of this field. In this publication, we present papers from the conference’s Research & Experience Track, the Business Track and the International Track.
While supporting the execution of business processes, information systems record event logs. Conformance checking relies on these logs to analyze whether the recorded behavior of a process conforms to the behavior of a normative specification. A key assumption of existing conformance checking techniques, however, is that all events are associated with timestamps that allow to infer a total order of events per process instance. Unfortunately, this assumption is often violated in practice. Due to synchronization issues, manual event recordings, or data corruption, events are only partially ordered. In this paper, we put forward the problem of partial order resolution of event logs to close this gap. It refers to the construction of a probability distribution over all possible total orders of events of an instance. To cope with the order uncertainty in real-world data, we present several estimators for this task, incorporating different notions of behavioral abstraction. Moreover, to reduce the runtime of conformance checking based on partial order resolution, we introduce an approximation method that comes with a bounded error in terms of accuracy. Our experiments with real-world and synthetic data reveal that our approach improves accuracy over the state-of-the-art considerably.
Modern datasets often exhibit diverse, feature-rich, unstructured data, and they are massive in size. This is the case of social networks, human genome, and e-commerce databases. As Artificial Intelligence (AI) systems are increasingly used to detect pattern in data and predict future outcome, there are growing concerns on their ability to process large amounts of data. Motivated by these concerns, we study the problem of designing AI systems that are scalable to very large and heterogeneous data-sets.
Many AI systems require to solve combinatorial optimization problems in their course of action. These optimization problems are typically NP-hard, and they may exhibit additional side constraints. However, the underlying objective functions often exhibit additional properties. These properties can be exploited to design suitable optimization algorithms. One of these properties is the well-studied notion of submodularity, which captures diminishing returns. Submodularity is often found in real-world applications. Furthermore, many relevant applications exhibit generalizations of this property.
In this thesis, we propose new scalable optimization algorithms for combinatorial problems with diminishing returns. Specifically, we focus on three problems, the Maximum Entropy Sampling problem, Video Summarization, and Feature Selection. For each problem, we propose new algorithms that work at scale. These algorithms are based on a variety of techniques, such as forward step-wise selection and adaptive sampling. Our proposed algorithms yield strong approximation guarantees, and the perform well experimentally.
We first study the Maximum Entropy Sampling problem. This problem consists of selecting a subset of random variables from a larger set, that maximize the entropy. By using diminishing return properties, we develop a simple forward step-wise selection optimization algorithm for this problem. Then, we study the problem of selecting a subset of frames, that represent a given video. Again, this problem corresponds to a submodular maximization problem. We provide a new adaptive sampling algorithm for this problem, suitable to handle the complex side constraints imposed by the application. We conclude by studying Feature Selection. In this case, the underlying objective functions generalize the notion of submodularity. We provide a new adaptive sequencing algorithm for this problem, based on the Orthogonal Matching Pursuit paradigm.
Overall, we study practically relevant combinatorial problems, and we propose new algorithms to solve them. We demonstrate that these algorithms are suitable to handle massive datasets. However, our analysis is not problem-specific, and our results can be applied to other domains, if diminishing return properties hold. We hope that the flexibility of our framework inspires further research into scalability in AI.