### Refine

#### Document Type

- Monograph/Edited Volume (9)
- Article (2)

#### Language

- English (11)

#### Is part of the Bibliography

- yes (11)

#### Keywords

Various kinds of typed attributed graphs are used to represent states of systems from a broad range of domains. For dynamic systems, established formalisms such as graph transformations provide a formal model for defining state sequences. We consider the extended case where time elapses between states and introduce a logic to reason about these sequences. With this logic we express properties on the structure and attributes of states as well as on the temporal occurrence of states that are related by their inner structure, which no formal logic over graphs accomplishes concisely so far. Firstly, we introduce graphs with history by equipping every graph element with the timestamp of its creation and, if applicable, its deletion. Secondly, we define a logic on graphs by integrating the temporal operator until into the well-established logic of nested graph conditions. Thirdly, we prove that our logic is equally expressive to nested graph conditions by providing a suitable reduction. Finally, the implementation of this reduction allows for the tool-based analysis of metric temporal properties for state sequences.

Today, software has become an intrinsic part of complex distributed embedded real-time systems. The next generation of embedded real-time systems will interconnect the today unconnected systems via complex software parts and the service-oriented paradigm. Therefore besides timed behavior and probabilistic behaviour also structure dynamics, where the architecture can be subject to changes at run-time, e.g. when dynamic binding of service end-points is employed or complex collaborations are established dynamically, is required. However, a modeling and analysis approach that combines all these necessary aspects does not exist so far.
To fill the identified gap, we propose Probabilistic Timed Graph Transformation Systems (PTGTSs) as a high-level description language that supports all the necessary aspects of structure dynamics, timed behavior, and probabilistic behavior. We introduce the formal model of PTGTSs in this paper and present a mapping of models with finite state spaces to probabilistic timed automata (PTA) that allows to use the PRISM model checker to analyze PTGTS models with respect to PTCTL properties.

Today, software has become an intrinsic part of complex distributed embedded real-time systems. The next generation of embedded real-time systems will interconnect the today unconnected systems via complex software parts and the service-oriented paradigm. Due to these interconnections, the architecture of systems can be subject to changes at run-time, e.g. when dynamic binding of service end-points is employed or complex collaborations are established dynamically. However, suitable formalisms and techniques that allow for modeling and analysis of timed and probabilistic behavior of such systems as well as of their structure dynamics do not exist so far. To fill the identified gap, we propose Probabilistic Timed Graph Transformation Systems (PTGTSs) as a high-level description language that supports all the necessary aspects of structure dynamics, timed behavior, and probabilistic behavior. We introduce the formal model of PTGTSs in this paper as well as present and formally verify a mapping of models with finite state spaces to probabilistic timed automata (PTA) that allows to use the PRISM model checker to analyze PTGTS models with respect to PTCTL properties. (C) 2018 Elsevier Inc. All rights reserved.

Cyber-physical systems often encompass complex concurrent behavior with timing constraints and probabilistic failures on demand. The analysis whether such systems with probabilistic timed behavior adhere to a given specification is essential. When the states of the system can be represented by graphs, the rule-based formalism of Probabilistic Timed Graph Transformation Systems (PTGTSs) can be used to suitably capture structure dynamics as well as probabilistic and timed behavior of the system. The model checking support for PTGTSs w.r.t. properties specified using Probabilistic Timed Computation Tree Logic (PTCTL) has been already presented. Moreover, for timed graph-based runtime monitoring, Metric Temporal Graph Logic (MTGL) has been developed for stating metric temporal properties on identified subgraphs and their structural changes over time. In this paper, we (a) extend MTGL to the Probabilistic Metric Temporal Graph Logic (PMTGL) by allowing for the specification of probabilistic properties, (b) adapt our MTGL satisfaction checking approach to PTGTSs, and (c) combine the approaches for PTCTL model checking and MTGL satisfaction checking to obtain a Bounded Model Checking (BMC) approach for PMTGL. In our evaluation, we apply an implementation of our BMC approach in AutoGraph to a running example.

The analysis of behavioral models is of high importance for cyber-physical systems, as the systems often encompass complex behavior based on e.g. concurrent components with mutual exclusion or probabilistic failures on demand. The rule-based formalism of probabilistic timed graph transformation systems is a suitable choice when the models representing states of the system can be understood as graphs and timed and probabilistic behavior is important. However, model checking PTGTSs is limited to systems with rather small state spaces.
We present an approach for the analysis of large scale systems modeled as probabilistic timed graph transformation systems by systematically decomposing their state spaces into manageable fragments. To obtain qualitative and quantitative analysis results for a large scale system, we verify that results obtained for its fragments serve as overapproximations for the corresponding results of the large scale system. Hence, our approach allows for the detection of violations of qualitative and quantitative safety properties for the large scale system under analysis. We consider a running example in which we model shuttles driving on tracks of a large scale topology and for which we verify that shuttles never collide and are unlikely to execute emergency brakes. In our evaluation, we apply an implementation of our approach to the running example.

The formal modeling and analysis is of crucial importance for software development processes following the model based approach. We present the formalism of Interval Probabilistic Timed Graph Transformation Systems (IPTGTSs) as a high-level modeling language. This language supports structure dynamics (based on graph transformation), timed behavior (based on clocks, guards, resets, and invariants as in Timed Automata (TA)), and interval probabilistic behavior (based on Discrete Interval Probability Distributions). That is, for the probabilistic behavior, the modeler using IPTGTSs does not need to provide precise probabilities, which are often impossible to obtain, but rather provides a probability range instead from which a precise probability is chosen nondeterministically. In fact, this feature on capturing probabilistic behavior distinguishes IPTGTSs from Probabilistic Timed Graph Transformation Systems (PTGTSs) presented earlier.
Following earlier work on Interval Probabilistic Timed Automata (IPTA) and PTGTSs, we also provide an analysis tool chain for IPTGTSs based on inter-formalism transformations. In particular, we provide in our tool AutoGraph a translation of IPTGTSs to IPTA and rely on a mapping of IPTA to Probabilistic Timed Automata (PTA) to allow for the usage of the Prism model checker. The tool Prism can then be used to analyze the resulting PTA w.r.t. probabilistic real-time queries asking for worst-case and best-case probabilities to reach a certain set of target states in a given amount of time.

Embedded real-time systems generate state sequences where time elapses between state changes. Ensuring that such systems adhere to a provided specification of admissible or desired behavior is essential. Formal model-based testing is often a suitable cost-effective approach. We introduce an extended version of the formalism of symbolic graphs, which encompasses types as well as attributes, for representing states of dynamic systems. Relying on this extension of symbolic graphs, we present a novel formalism of timed graph transformation systems (TGTSs) that supports the model-based development of dynamic real-time systems at an abstract level where possible state changes and delays are specified by graph transformation rules. We then introduce an extended form of the metric temporal graph logic (MTGL) with increased expressiveness to improve the applicability of MTGL for the specification of timed graph sequences generated by a TGTS. Based on the metric temporal operators of MTGL and its built-in graph binding mechanics, we express properties on the structure and attributes of graphs as well as on the occurrence of graphs over time that are related by their inner structure. We provide formal support for checking whether a single generated timed graph sequence adheres to a provided MTGL specification. Relying on this logical foundation, we develop a testing framework for TGTSs that are specified using MTGL. Lastly, we apply this testing framework to a running example by using our prototypical implementation in the tool AutoGraph.

Graph repair, restoring consistency of a graph, plays a prominent role in several areas of computer science and beyond: For example, in model-driven engineering, the abstract syntax of models is usually encoded using graphs. Flexible edit operations temporarily create inconsistent graphs not representing a valid model, thus requiring graph repair. Similarly, in graph databases—managing the storage and manipulation of graph data—updates may cause that a given database does not satisfy some integrity constraints, requiring also graph repair.
We present a logic-based incremental approach to graph repair, generating a sound and complete (upon termination) overview of least-changing repairs. In our context, we formalize consistency by so-called graph conditions being equivalent to first-order logic on graphs. We present two kind of repair algorithms: State-based repair restores consistency independent of the graph update history, whereas deltabased (or incremental) repair takes this history explicitly into account. Technically, our algorithms rely on an existing model generation algorithm for graph conditions implemented in AutoGraph. Moreover, the delta-based approach uses the new concept of satisfaction (ST) trees for encoding if and how a graph satisfies a graph condition. We then demonstrate how to manipulate these STs incrementally with respect to a graph update.

The analysis of behavioral models such as Graph Transformation Systems (GTSs) is of central importance in model-driven engineering. However, GTSs often result in intractably large or even infinite state spaces and may be equipped with multiple or even infinitely many start graphs. To mitigate these problems, static analysis techniques based on finite symbolic representations of sets of states or paths thereof have been devised. We focus on the technique of k-induction for establishing invariants specified using graph conditions. To this end, k-induction generates symbolic paths backwards from a symbolic state representing a violation of a candidate invariant to gather information on how that violation could have been reached possibly obtaining contradictions to assumed invariants. However, GTSs where multiple agents regularly perform actions independently from each other cannot be analyzed using this technique as of now as the independence among backward steps may prevent the gathering of relevant knowledge altogether.
In this paper, we extend k-induction to GTSs with multiple agents thereby supporting a wide range of additional GTSs. As a running example, we consider an unbounded number of shuttles driving on a large-scale track topology, which adjust their velocity to speed limits to avoid derailing. As central contribution, we develop pruning techniques based on causality and independence among backward steps and verify that k-induction remains sound under this adaptation as well as terminates in cases where it did not terminate before.