004 Datenverarbeitung; Informatik
Refine
Year of publication
Document Type
- Article (242)
- Monograph/Edited Volume (158)
- Doctoral Thesis (145)
- Postprint (47)
- Conference Proceeding (39)
- Master's Thesis (10)
- Other (5)
- Preprint (3)
- Habilitation Thesis (1)
- Moving Images (1)
Language
- English (488)
- German (161)
- Multiple languages (2)
Keywords
- Informatik (18)
- Didaktik (15)
- Ausbildung (13)
- Hochschuldidaktik (13)
- answer set programming (12)
- machine learning (11)
- Cloud Computing (10)
- cloud computing (10)
- Hasso-Plattner-Institut (9)
- E-Learning (8)
Institute
- Institut für Informatik und Computational Science (256)
- Hasso-Plattner-Institut für Digital Engineering gGmbH (199)
- Hasso-Plattner-Institut für Digital Engineering GmbH (96)
- Extern (51)
- Mathematisch-Naturwissenschaftliche Fakultät (24)
- Institut für Mathematik (15)
- Wirtschaftswissenschaften (13)
- Digital Engineering Fakultät (6)
- Institut für Physik und Astronomie (6)
- Institut für Umweltwissenschaften und Geographie (6)
Empirical investigations on the uncanny valley have almost solely focused on the analysis of people?s noninteractive perception of a robot at first sight. Recent studies suggest, however, that these uncanny first impressions may be significantly altered over an interaction. What is yet to discover is whether certain interaction patterns can lead to a faster decline in uncanny feelings. In this paper, we present a study in which participants with limited expertise in Computer Science played a collaborative geography game with a Furhat robot. During the game, Furhat displayed one of two personalities, which corresponded to two different interaction strategies. The robot was either optimistic and encouraging, or impatient and provocative. We performed the study in a science museum and recruited participants among the visitors. Our findings suggest that a robot that is rated high on agreeableness, emotional stability, and conscientiousness can indeed weaken uncanny feelings. This study has important implications for human-robot interaction design as it further highlights that a first impression, merely based on a robot?s appearance, is not indicative of the affinity people might develop towards it throughout an interaction. We thus argue that future work should emphasize investigations on exact interaction patterns that can help to overcome uncanny feelings.
The amount of data stored in databases and the complexity of database workloads are ever- increasing. Database management systems (DBMSs) offer many configuration options, such as index creation or unique constraints, which must be adapted to the specific instance to efficiently process large volumes of data. Currently, such database optimization is complicated, manual work performed by highly skilled database administrators (DBAs). In cloud scenarios, manual database optimization even becomes infeasible: it exceeds the abilities of the best DBAs due to the enormous number of deployed DBMS instances (some providers maintain millions of instances), missing domain knowledge resulting from data privacy requirements, and the complexity of the configuration tasks.
Therefore, we investigate how to automate the configuration of DBMSs efficiently with the help of unsupervised database optimization. While there are numerous configuration options, in this thesis, we focus on automatic index selection and the use of data dependencies, such as functional dependencies, for query optimization. Both aspects have an extensive performance impact and complement each other by approaching unsupervised database optimization from different perspectives.
Our contributions are as follows: (1) we survey automated state-of-the-art index selection algorithms regarding various criteria, e.g., their support for index interaction. We contribute an extensible platform for evaluating the performance of such algorithms with industry-standard datasets and workloads. The platform is well-received by the community and has led to follow-up research. With our platform, we derive the strengths and weaknesses of the investigated algorithms. We conclude that existing solutions often have scalability issues and cannot quickly determine (near-)optimal solutions for large problem instances. (2) To overcome these limitations, we present two new algorithms. Extend determines (near-)optimal solutions with an iterative heuristic. It identifies the best index configurations for the evaluated benchmarks. Its selection runtimes are up to 10 times lower compared with other near-optimal approaches. SWIRL is based on reinforcement learning and delivers solutions instantly. These solutions perform within 3 % of the optimal ones. Extend and SWIRL are available as open-source implementations.
(3) Our index selection efforts are complemented by a mechanism that analyzes workloads to determine data dependencies for query optimization in an unsupervised fashion. We describe and classify 58 query optimization techniques based on functional, order, and inclusion dependencies as well as on unique column combinations. The unsupervised mechanism and three optimization techniques are implemented in our open-source research DBMS Hyrise. Our approach reduces the Join Order Benchmark’s runtime by 26 % and accelerates some TPC-DS queries by up to 58 times.
Additionally, we have developed a cockpit for unsupervised database optimization that allows interactive experiments to build confidence in such automated techniques. In summary, our contributions improve the performance of DBMSs, support DBAs in their work, and enable them to contribute their time to other, less arduous tasks.
Pictures are a medium that helps make the past tangible and preserve memories. Without context, they are not able to do so. Pictures are brought to life by their associated stories. However, the older pictures become, the fewer contemporary witnesses can tell these stories.
Especially for large, analog picture archives, knowledge and memories are spread over many people. This creates several challenges: First, the pictures must be digitized to save them from decaying and make them available to the public. Since a simple listing of all the pictures is confusing, the pictures should be structured accessibly. Second, known information that makes the stories vivid needs to be added to the pictures. Users should get the opportunity to contribute their knowledge and memories. To make this usable for all interested parties, even for older, less technophile generations, the interface should be intuitive and error-tolerant.
The resulting requirements are not covered in their entirety by any existing software solution without losing the intuitive interface or the scalability of the system.
Therefore, we have developed our digital picture archive within the scope of a bachelor project in cooperation with the Bad Harzburg-Stiftung. For the implementation of this web application, we use the UI framework React in the frontend, which communicates via a GraphQL interface with the Content Management System Strapi in the backend. The use of this system enables our project partner to create an efficient process from scanning analog pictures to presenting them to visitors in an organized and annotated way. To customize the solution for both picture delivery and information contribution for our target group, we designed prototypes and evaluated them with people from Bad Harzburg. This helped us gain valuable insights into our system’s usability and future challenges as well as requirements.
Our web application is already being used daily by our project partner. During the project, we still came up with numerous ideas for additional features to further support the exchange of knowledge.
Accurately solving classification problems nowadays is likely to be the most relevant machine learning task. Binary classification separating two classes only is algorithmically simpler but has fewer potential applications as many real-world problems are multi-class. On the reverse, separating only a subset of classes simplifies the classification task. Even though existing multi-class machine learning algorithms are very flexible regarding the number of classes, they assume that the target set Y is fixed and cannot be restricted once the training is finished. On the other hand, existing state-of-the-art production environments are becoming increasingly interconnected with the advance of Industry 4.0 and related technologies such that additional information can simplify the respective classification problems. In light of this, the main aim of this thesis is to introduce dynamic classification that generalizes multi-class classification such that the target class set can be restricted arbitrarily to a non-empty class subset M of Y at any time between two consecutive predictions.
This task is solved by a combination of two algorithmic approaches. First, classifier calibration, which transforms predictions into posterior probability estimates that are intended to be well calibrated. The analysis provided focuses on monotonic calibration and in particular corrects wrong statements that appeared in the literature. It also reveals that bin-based evaluation metrics, which became popular in recent years, are unjustified and should not be used at all. Next, the validity of Platt scaling, which is the most relevant parametric calibration approach, is analyzed in depth. In particular, its optimality for classifier predictions distributed according to four different families of probability distributions as well its equivalence with Beta calibration up to a sigmoidal preprocessing are proven. For non-monotonic calibration, extended variants on kernel density estimation and the ensemble method EKDE are introduced. Finally, the calibration techniques are evaluated using a simulation study with complete information as well as on a selection of 46 real-world data sets.
Building on this, classifier calibration is applied as part of decomposition-based classification that aims to reduce multi-class problems to simpler (usually binary) prediction tasks. For the involved fusing step performed at prediction time, a new approach based on evidence theory is presented that uses classifier calibration to model mass functions. This allows the analysis of decomposition-based classification against a strictly formal background and to prove closed-form equations for the overall combinations. Furthermore, the same formalism leads to a consistent integration of dynamic class information, yielding a theoretically justified and computationally tractable dynamic classification model. The insights gained from this modeling are combined with pairwise coupling, which is one of the most relevant reduction-based classification approaches, such that all individual predictions are combined with a weight. This not only generalizes existing works on pairwise coupling but also enables the integration of dynamic class information.
Lastly, a thorough empirical study is performed that compares all newly introduced approaches to existing state-of-the-art techniques. For this, evaluation metrics for dynamic classification are introduced that depend on corresponding sampling strategies. Thereafter, these are applied during a three-part evaluation. First, support vector machines and random forests are applied on 26 data sets from the UCI Machine Learning Repository. Second, two state-of-the-art deep neural networks are evaluated on five benchmark data sets from a relatively recent reference work. Here, computationally feasible strategies to apply the presented algorithms in combination with large-scale models are particularly relevant because a naive application is computationally intractable. Finally, reference data from a real-world process allowing the inclusion of dynamic class information are collected and evaluated. The results show that in combination with support vector machines and random forests, pairwise coupling approaches yield the best results, while in combination with deep neural networks, differences between the different approaches are mostly small to negligible. Most importantly, all results empirically confirm that dynamic classification succeeds in improving the respective prediction accuracies. Therefore, it is crucial to pass dynamic class information in respective applications, which requires an appropriate digital infrastructure.
Teaching and learning as well as administrative processes are still experiencing intensive changes with the rise of artificial intelligence (AI) technologies and its diverse application opportunities in the context of higher education. Therewith, the scientific interest in the topic in general, but also specific focal points rose as well. However, there is no structured overview on AI in teaching and administration processes in higher education institutions that allows to identify major research topics and trends, and concretizing peculiarities and develops recommendations for further action. To overcome this gap, this study seeks to systematize the current scientific discourse on AI in teaching and administration in higher education institutions. This study identified an (1) imbalance in research on AI in educational and administrative contexts, (2) an imbalance in disciplines and lack of interdisciplinary research, (3) inequalities in cross-national research activities, as well as (4) neglected research topics and paths. In this way, a comparative analysis between AI usage in administration and teaching and learning processes, a systematization of the state of research, an identification of research gaps as well as further research path on AI in higher education institutions are contributed to research.
Teaching and learning as well as administrative processes are still experiencing intensive changes with the rise of artificial intelligence (AI) technologies and its diverse application opportunities in the context of higher education. Therewith, the scientific interest in the topic in general, but also specific focal points rose as well. However, there is no structured overview on AI in teaching and administration processes in higher education institutions that allows to identify major research topics and trends, and concretizing peculiarities and develops recommendations for further action. To overcome this gap, this study seeks to systematize the current scientific discourse on AI in teaching and administration in higher education institutions. This study identified an (1) imbalance in research on AI in educational and administrative contexts, (2) an imbalance in disciplines and lack of interdisciplinary research, (3) inequalities in cross-national research activities, as well as (4) neglected research topics and paths. In this way, a comparative analysis between AI usage in administration and teaching and learning processes, a systematization of the state of research, an identification of research gaps as well as further research path on AI in higher education institutions are contributed to research.
Defining the metaverse
(2023)
The term Metaverse is emerging as a result of the late push by multinational technology conglomerates and a recent surge of interest in Web 3.0, Blockchain, NFT, and Cryptocurrencies. From a scientific point of view, there is no definite consensus on what the Metaverse will be like. This paper collects, analyzes, and synthesizes scientific definitions and the accompanying major characteristics of the Metaverse using the methodology of a Systematic Literature Review (SLR). Two revised definitions for the Metaverse are presented, both condensing the key attributes, where the first one is rather simplistic holistic describing “a three-dimensional online environment in which users represented by avatars interact with each other in virtual spaces decoupled from the real physical world”. In contrast, the second definition is specified in a more detailed manner in the paper and further discussed. These comprehensive definitions offer specialized and general scholars an application within and beyond the scientific context of the system science, information system science, computer science, and business informatics, by also introducing open research challenges. Furthermore, an outlook on the social, economic, and technical implications is given, and the preconditions that are necessary for a successful implementation are discussed.
Defining the metaverse
(2023)
The term Metaverse is emerging as a result of the late push by multinational technology conglomerates and a recent surge of interest in Web 3.0, Blockchain, NFT, and Cryptocurrencies. From a scientific point of view, there is no definite consensus on what the Metaverse will be like. This paper collects, analyzes, and synthesizes scientific definitions and the accompanying major characteristics of the Metaverse using the methodology of a Systematic Literature Review (SLR). Two revised definitions for the Metaverse are presented, both condensing the key attributes, where the first one is rather simplistic holistic describing “a three-dimensional online environment in which users represented by avatars interact with each other in virtual spaces decoupled from the real physical world”. In contrast, the second definition is specified in a more detailed manner in the paper and further discussed. These comprehensive definitions offer specialized and general scholars an application within and beyond the scientific context of the system science, information system science, computer science, and business informatics, by also introducing open research challenges. Furthermore, an outlook on the social, economic, and technical implications is given, and the preconditions that are necessary for a successful implementation are discussed.
This special issue contains extended versions of four selected papers from the 11th International Conference on Graph Transformation (ICGT 2018). The articles cover a tool for computing core graphs via SAT/SMT solvers (graph language definition), graph transformation through graph surfing in reaction systems (a new graph transformation formalism), the essence and initiality of conflicts in M-adhesive transformation systems, and a calculus of concurrent graph-rewriting processes (theory on conflicts and parallel independence).
Like conventional software projects, projects in model-driven software engineering require adequate management of multiple versions of development artifacts, importantly allowing living with temporary inconsistencies. In the case of model-driven software engineering, employed versioning approaches also have to handle situations where different artifacts, that is, different models, are linked via automatic model transformations.
In this report, we propose a technique for jointly handling the transformation of multiple versions of a source model into corresponding versions of a target model, which enables the use of a more compact representation that may afford improved execution time of both the transformation and further analysis operations. Our approach is based on the well-known formalism of triple graph grammars and a previously introduced encoding of model version histories called multi-version models. In addition to showing the correctness of our approach with respect to the standard semantics of triple graph grammars, we conduct an empirical evaluation that demonstrates the potential benefit regarding execution time performance.