• search hit 9 of 58721
Back to Result List

Sediment and carbon accumulation in a glacial lake in Chukotka (Arctic Siberia) during the Late Pleistocene and Holocene

  • Lakes act as important sinks for inorganic and organic sediment components. However, investigations of sedimentary carbon budgets within glacial lakes are currently absent from Arctic Siberia. The aim of this paper is to provide the first reconstruction of accumulation rates, sediment and carbon budgets from a lacustrine sediment core from Lake Rauchuagytgyn, Chukotka (Arctic Siberia). We combined multiple sediment biogeochemical and sedimentological parameters from a radiocarbon-dated 6.5m sediment core with lake basin hydroacoustic data to derive sediment stratigraphy, sediment volumes and infill budgets. Our results distinguished three principal sediment and carbon accumulation regimes that could be identified across all measured environmental proxies including early Marine Isotope Stage 2 (MIS2) (ca. 29-23.4 ka cal BP), mid-MIS2-early MIS1 (ca. 23.4-11.69 ka cal BP) and the Holocene (ca. 11.69-present). Estimated organic carbon accumulation rates (OCARs) were higher within Holocene sediments (average 3.53 gOCm(-2) a(-1)) thanLakes act as important sinks for inorganic and organic sediment components. However, investigations of sedimentary carbon budgets within glacial lakes are currently absent from Arctic Siberia. The aim of this paper is to provide the first reconstruction of accumulation rates, sediment and carbon budgets from a lacustrine sediment core from Lake Rauchuagytgyn, Chukotka (Arctic Siberia). We combined multiple sediment biogeochemical and sedimentological parameters from a radiocarbon-dated 6.5m sediment core with lake basin hydroacoustic data to derive sediment stratigraphy, sediment volumes and infill budgets. Our results distinguished three principal sediment and carbon accumulation regimes that could be identified across all measured environmental proxies including early Marine Isotope Stage 2 (MIS2) (ca. 29-23.4 ka cal BP), mid-MIS2-early MIS1 (ca. 23.4-11.69 ka cal BP) and the Holocene (ca. 11.69-present). Estimated organic carbon accumulation rates (OCARs) were higher within Holocene sediments (average 3.53 gOCm(-2) a(-1)) than Pleistocene sediments (average 1.08 gOCm(-2) a(-1)) and are similar to those calculated for boreal lakes from Quebec and Finland and Lake Baikal but significantly lower than Siberian thermokarst lakes and Alberta glacial lakes. Using a bootstrapping approach, we estimated the total organic carbon pool to be 0.26 +/- 0.02 Mt and a total sediment pool of 25.7 +/- 1.71 Mt within a hydroacoustically derived sediment volume of ca. 32 990 557m(3). The total organic carbon pool is substantially smaller than Alaskan yedoma, thermokarst lake sediments and Alberta glacial lakes but shares similarities with Finnish boreal lakes. Temporal variability in sediment and carbon accumulation dynamics at Lake Rauchuagytgyn is controlled predominantly by palaeoclimate variation that regulates lake ice-cover dynamics and catchment glacial, fluvial and permafrost processes through time. These processes, in turn, affect catchment and within-lake primary productivity as well as catchment soil development. Spatial differences compared to other lake systems at a trans-regional scale likely relate to the high-latitude, mountainous location of Lake Rauchuagytgyn.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Stuart A. Vyse, Ulrike HerzschuhORCiDGND, Gregor PfalzORCiDGND, Lyudmila A. Pestryakova, Bernhard DiekmannORCiDGND, Norbert Nowaczyk, Boris K. BiskabornORCiD
DOI:https://doi.org/10.5194/bg-18-4791-2021
ISSN:1726-4170
ISSN:1726-4189
Title of parent work (English):Biogeosciences
Subtitle (English):combining hydroacoustic profiling and down-core analyses
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Date of first publication:2021/08/24
Publication year:2021
Release date:2024/09/19
Volume:18
Issue:16
Number of pages:26
First page:4791
Last Page:4816
Funding institution:European Research Council H2020 [772852]; Bundesministerium fur Bildung und ForschungFederal Ministry of Education & Research (BMBF) [01LP1510D]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-45-140053]; Ministry of Science and Higher Education of the Russian Federation [FSRG-2020-0019]; Past Permafrost Project under the umbrella of the Earth System Knowledge Platform (ESKP)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.