570 Biowissenschaften; Biologie
Refine
Year of publication
Document Type
- Article (869)
- Doctoral Thesis (633)
- Postprint (376)
- Other (50)
- Review (38)
- Habilitation Thesis (19)
- Master's Thesis (8)
- Part of Periodical (7)
- Monograph/Edited Volume (6)
- Conference Proceeding (5)
Keywords
- Arabidopsis thaliana (32)
- Arabidopsis (23)
- climate change (23)
- Dictyostelium (20)
- ancient DNA (20)
- biodiversity (17)
- evolution (16)
- coexistence (14)
- diversity (13)
- phylogeny (13)
Institute
- Institut für Biochemie und Biologie (1556)
- Institut für Ernährungswissenschaft (204)
- Mathematisch-Naturwissenschaftliche Fakultät (119)
- Extern (75)
- Institut für Chemie (44)
- Institut für Geowissenschaften (26)
- Institut für Physik und Astronomie (21)
- Department Sport- und Gesundheitswissenschaften (9)
- Institut für Umweltwissenschaften und Geographie (9)
- Strukturbereich Kognitionswissenschaften (9)
Although aquatic and parasitic fungi have been well known for more than 100 years, they have only recently received increased awareness due to their key roles in microbial food webs and biogeochemical cycles. There is growing evidence indicating that fungi inhabit a wide range of marine habitats, from the deep sea all the way to surface waters, and recent advances in molecular tools, in particular metagenome approaches, reveal that their diversity is much greater and their ecological roles more important than previously considered. Parasitism constitutes one of the most widespread ecological interactions in nature, occurring in almost all environments. Despite that, the diversity of fungal parasites, their ecological functions, and, in particular their interactions with other microorganisms remain largely speculative, unexplored and are often missing from current theoretical concepts in marine ecology and biogeochemistry. In this review, we summarize and discuss recent research avenues on parasitic fungi and their ecological potential in marine ecosystems, e.g., the fungal shunt, and emphasize the need for further research.
Although ecological networks are typically constructed based on a single type of interaction, e.g. trophic interactions in a food web, a more complete picture of ecosystem composition and functioning arises from merging networks of multiple interaction types. In this work, we consider tripartite networks constructed by merging two bipartite networks, one mutualistic and one antagonistic. Taking the interactions within each sub-network to be distributed randomly, we consider the stability of the dynamics of the network based on the spectrum of its community matrix. In the asymptotic limit of a large number of species, we show that the spectrum undergoes an eigenvalue phase transition, which leads to an abrupt destabilisation of the network as the ratio of mutualists to antagonists is increased. We also derive results that show how this transition is manifest in networks of finite size, as well as when disorder is introduced in the segregation of the two interaction types. Our random-matrix results will serve as a baseline for understanding the behaviour of merged networks with more realistic structures and/or more detailed dynamics.
Background: Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer?s disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. Methods: In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. Results: Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 ?M) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. Conclusion: One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases.
Simple Summary Many animals that have to cope with predation have evolved mechanisms to reduce their predation risk. One of these mechanisms is change in morphology, for example, the development of spines. These spines are induced, when mothers receive chemical signals of a predator (kairomones) and their daughters are then equipped with defensive spines. We studied the behaviour of a prey and its predator when the prey is either defended or undefended. We used common aquatic micro-invertebrates, the rotifers Brachionus calyciflorus (prey) and Asplanchna brightwellii (predator) as experimental animals. We found that undefended prey increased its swimming speed in the presence of the predator. The striking result was that the defended prey did not respond to the predator's presence. This suggests that defended prey has a different response behaviour to a predator than undefended conspecifics. Our study provides further insights into complex zooplankton predator-prey interactions. Predation is a strong species interaction causing severe harm or death to prey. Thus, prey species have evolved various defence strategies to minimize predation risk, which may be immediate (e.g., a change in behaviour) or transgenerational (morphological defence structures). We studied the behaviour of two strains of a rotiferan prey (Brachionus calyciflorus) that differ in their ability to develop morphological defences in response to their predator Asplanchna brightwellii. Using video analysis, we tested: (a) if two strains differ in their response to predator presence and predator cues when both are undefended; (b) whether defended individuals respond to live predators or their cues; and (c) if the morphological defence (large spines) per se has an effect on the swimming behaviour. We found a clear increase in swimming speed for both undefended strains in predator presence. However, the defended specimens responded neither to the predator presence nor to their cues, showing that they behave indifferently to their predator when they are defended. We did not detect an effect of the spines on the swimming behaviour. Our study demonstrates a complex plastic behaviour of the prey, not only in the presence of their predator, but also with respect to their defence status.
Understanding the environmental impact on the assembly of local communities in relation to their spatial and temporal connectivity is still a challenge in metacommunity ecology. This study aims to unravel underlying metacommunity processes and environmental factors that result in observed zooplankton communities. Unlike most metacommunity studies, we jointly examine active and dormant zooplankton communities using a DNA metabarcoding approach to overcome limitations of morphological species identification. We applied two-fragment (COI and 18S) metabarcoding to monitor communities of 24 kettle holes over a two-year period to unravel (i) spatial and temporal connectivity of the communities, (ii) environmental factors influencing local communities, and (iii) dominant underlying metacommunity processes in this system. We found a strong separation of zooplankton communities from kettle holes of different hydroperiods (degree of permanency) throughout the season, while the community composition within single kettle holes did not differ between years. Species richness was primarily dependent on pH and permanency, while species diversity (Shannon Index) was influenced by kettle hole location. Community composition was impacted by kettle hole size and surrounding field crops. Environmental processes dominated temporal and spatial processes. Sediment communities showed a different composition compared to water samples but did not differ between ephemeral and permanent kettle holes. Our results suggest that communities are mainly structured by environmental filtering based on pH, kettle hole size, surrounding field crops, and permanency. Environmental filtering based on specific conditions in individual kettle holes seems to be the dominant process in community assembly in the studied zooplankton metacommunity.
L-2,L-1-norm regularized multivariate regression model with applications to genomic prediction
(2021)
Motivation:
Genomic selection (GS) is currently deemed the most effective approach to speed up breeding of agricultural varieties. It has been recognized that consideration of multiple traits in GS can improve accuracy of prediction for traits of low heritability. However, since GS forgoes statistical testing with the idea of improving predictions, it does not facilitate mechanistic understanding of the contribution of particular single nucleotide polymorphisms (SNP).
Results:
Here, we propose a L-2,L-1-norm regularized multivariate regression model and devise a fast and efficient iterative optimization algorithm, called L-2,L-1-joint, applicable in multi-trait GS. The usage of the L-2,L-1-norm facilitates variable selection in a penalized multivariate regression that considers the relation between individuals, when the number of SNPs is much larger than the number of individuals. The capacity for variable selection allows us to define master regulators that can be used in a multi-trait GS setting to dissect the genetic architecture of the analyzed traits. Our comparative analyses demonstrate that the proposed model is a favorable candidate compared to existing state-of-the-art approaches. Prediction and variable selection with datasets from Brassica napus, wheat and Arabidopsis thaliana diversity panels are conducted to further showcase the performance of the proposed model.
The PNPLA3 reference single-nucleotide polymorphism rs738409 has been identified as a predisposing factor for nonalcoholic fatty liver disease. A simple method based on PCR and restriction fragment length polymorphism (RFLP) analysis had been published to detect the nonpathogenic allele PNPLA3 rs738409 variant. The presence of the pathogenic variant was deduced by the indigestibility of the corresponding PCR product with BtsCI recognizing the nonpathogenic allele. However, one cannot exclude that an enzymatic reaction does not occur for other, more trivial, reasons. For safe and secure detection of the pathogenic PNPLA3 rs738409, we have further developed the PCR-restriction fragment length polymorphism method by adding a second restriction enzyme digest, clearly identifying the correct PNPLA3 alleles and in particular the pathogenic variant. <br /> METHOD SUMMARY <br /> The method presented here represents an improved genetic diagnosis of the PNPLA3 rs738409 alleles based on conventional and inexpensive molecular biological methods. We used methodology based on PCR and restriction fragment length polymorphisms and clearly identified both described alleles by the use of two restriction enzymes. Digestion of individuals' specific PNPLA3 PCR fragments with both enzymes in independent reactions clearly showed the PNPLA3 rs738409 genotype.
Functional characterization of ROS-responsive genes, ANAC085 and ATR7, in Arabidopsis thaliana
(2023)
Aptamers are single-stranded DNA (ssDNA) or RNA molecules that can bind specifically and with high affinity to target molecules due to their unique three-dimensional structure. For this reason, they are often compared to antibodies and sometimes even referred to as “chemical antibodies”. They are simple and inexpensive to synthesize, easy to modify, and smaller than conventional antibodies. Enzymes, especially hydrolases, are interesting targets in this context. This class of enzymes is capable of hydrolytically cleaving various macromolecules such as proteins, as well as smaller molecules such as antibiotics. Hence, they play an important role in many biological processes including diseases and their treatment. Hydrolase detection as well as the understanding of their function is therefore of great importance for diagnostics and therapy. Due to their various desirable features compared to antibodies, aptamers are being discussed as alternative agents for analytical and diagnostic use in various applications. The use of aptamers in therapy is also frequently investigated, as the binding of aptamers can have effects on the catalytic activity, protein-protein interactions, or proteolytic cascades. Aptamers are generated by an in vitro selection process. Potential aptamer candidates are selected from a pool of enriched nucleic acid sequences with affinity to the target, and their binding affinity and specificity is investigated. This is one of the most important steps in aptamer generation to obtain specific aptamers with high affinity for use in analytical and diagnostic applications. The binding properties or binding domains and their effects on enzyme functions form the basis for therapeutic applications.
In this work, the binding properties of DNA aptamers against two different hydrolases were investigated. In view of their potential utility for analytical methods, aptamers against human urokinase (uPA) and New Delhi metallo-β-lactamase-1 (NDM-1) were evaluated for their binding affinity and specificity using different methods. Using the uPA aptamers, a protocol for measuring the binding kinetics of an aptamer-protein-interaction by surface plasmon resonance spectroscopy (SPR) was developed. Based on the increased expression of uPA in different types of cancer, uPA is discussed as a prognostic and diagnostic tumor marker. As uPA aptamers showed different binding sites on the protein, microtiter plate-based aptamer sandwich assay systems for the detection of uPA were developed. Because of the function of urokinase in cancer cell proliferation and metastasis, uPA is also discussed as a therapeutic target. In this regard, the different binding sites of aptamers showed different effects on uPA function. In vitro experiments demonstrated both inhibition of uPA binding to its receptor as well as the inhibition of uPA catalytic activity for different aptamers. Thus, in addition to their specificity and affinity for their targets, the utility of the aptamers for potential diagnostic and therapeutic applications was demonstrated. First, as an alternative inhibitor of human urokinase for therapeutic purposes, and second, as valuable recognition molecules for the detection of urokinase, as a prognostic and diagnostic marker for cancer, and for NDM-1 to detect resistance to carbapenem antibiotics.