Institut für Biochemie und Biologie
Refine
Year of publication
Document Type
- Article (3375)
- Doctoral Thesis (967)
- Postprint (246)
- Review (126)
- Other (81)
- Monograph/Edited Volume (50)
- Conference Proceeding (50)
- Preprint (20)
- Habilitation Thesis (17)
- Part of Periodical (7)
Keywords
- Arabidopsis thaliana (50)
- Arabidopsis (38)
- climate change (37)
- Dictyostelium (25)
- ancient DNA (25)
- biodiversity (25)
- population dynamics (18)
- animal personality (17)
- Evolution (16)
- evolution (16)
Institute
- Institut für Biochemie und Biologie (4947)
- Extern (62)
- Mathematisch-Naturwissenschaftliche Fakultät (12)
- Institut für Geowissenschaften (10)
- Institut für Umweltwissenschaften und Geographie (10)
- Institut für Chemie (8)
- Zentrum für Umweltwissenschaften (6)
- Interdisziplinäres Zentrum für Musterdynamik und Angewandte Fernerkundung (4)
- Institut für Ernährungswissenschaft (2)
- Institut für Mathematik (2)
Background
Animal personality has emerged as a key concept in behavioral ecology. While many studies have demonstrated the influence of personality traits on behavioral patterns, its quantification, especially in wild animal populations, remains a challenge. Only a few studies have established a link between personality and recurring movements within home ranges, although these small-scale movements are of key importance for identifying ecological interactions and forming individual niches. In this regard, differences in space use among individuals might reflect different exploration styles between behavioral types along the shy-bold continuum.
Methods
We assessed among-individual differences in behavior in the European hare (Lepus europaeus), a characteristic mammalian herbivore in agricultural landscapes using a standardized box emergence test for captive and wild hares. We determined an individuals’ degree of boldness by measuring the latencies of behavioral responses in repeated emergence tests in captivity. During capture events of wild hares, we conducted a single emergence test and recorded behavioral responses proven to be stable over time in captive hares. Applying repeated novel environment tests in a near-natural enclosure, we further quantified aspects of exploration and activity in captive hares. Finally, we investigated whether and how this among-individual behavioral variation is related to general activity and space use in a wild hare population. Wild and captive hares were treated similarly and GPS-collared with internal accelerometers prior to release to the wild or the outdoor enclosure, respectively. General activity was quantified as overall dynamic body acceleration (ODBA) obtained from accelerometers. Finally, we tested whether boldness explained variation in (i) ODBA in both settings and (ii) variation in home ranges and core areas across different time scales of GPS-collared hares in a wild population.
Results
We found three behavioral responses to be consistent over time in captive hares. ODBA was positively related to boldness (i.e., short latencies to make first contact with the new environment) in both captive and wild hares. Space use in wild hares also varied with boldness, with shy individuals having smaller core areas and larger home ranges than bold conspecifics (yet in some of the parameter space, this association was just marginally significant).
Conclusions
Against our prediction, shy individuals occupied relatively large home ranges but with small core areas. We suggest that this space use pattern is due to them avoiding risky, and energy-demanding competition for valuable resources. Carefully validated, activity measurements (ODBA) from accelerometers provide a valuable tool to quantify aspects of animal personality along the shy-bold continuum remotely. Without directly observing—and possibly disturbing—focal individuals, this approach allows measuring variability in animal personality, especially in species that are difficult to assess with experiments. Considering that accelerometers are often already built into GPS units, we recommend activating them at least during the initial days of tracking to estimate individual variation in general activity and, if possible, match them with a simple novelty experiment. Furthermore, information on individual behavioral types will help to facilitate mechanistic understanding of processes that drive spatial and ecological dynamics in heterogeneous landscapes.
Background
Animal personality has emerged as a key concept in behavioral ecology. While many studies have demonstrated the influence of personality traits on behavioral patterns, its quantification, especially in wild animal populations, remains a challenge. Only a few studies have established a link between personality and recurring movements within home ranges, although these small-scale movements are of key importance for identifying ecological interactions and forming individual niches. In this regard, differences in space use among individuals might reflect different exploration styles between behavioral types along the shy-bold continuum.
Methods
We assessed among-individual differences in behavior in the European hare (Lepus europaeus), a characteristic mammalian herbivore in agricultural landscapes using a standardized box emergence test for captive and wild hares. We determined an individuals’ degree of boldness by measuring the latencies of behavioral responses in repeated emergence tests in captivity. During capture events of wild hares, we conducted a single emergence test and recorded behavioral responses proven to be stable over time in captive hares. Applying repeated novel environment tests in a near-natural enclosure, we further quantified aspects of exploration and activity in captive hares. Finally, we investigated whether and how this among-individual behavioral variation is related to general activity and space use in a wild hare population. Wild and captive hares were treated similarly and GPS-collared with internal accelerometers prior to release to the wild or the outdoor enclosure, respectively. General activity was quantified as overall dynamic body acceleration (ODBA) obtained from accelerometers. Finally, we tested whether boldness explained variation in (i) ODBA in both settings and (ii) variation in home ranges and core areas across different time scales of GPS-collared hares in a wild population.
Results
We found three behavioral responses to be consistent over time in captive hares. ODBA was positively related to boldness (i.e., short latencies to make first contact with the new environment) in both captive and wild hares. Space use in wild hares also varied with boldness, with shy individuals having smaller core areas and larger home ranges than bold conspecifics (yet in some of the parameter space, this association was just marginally significant).
Conclusions
Against our prediction, shy individuals occupied relatively large home ranges but with small core areas. We suggest that this space use pattern is due to them avoiding risky, and energy-demanding competition for valuable resources. Carefully validated, activity measurements (ODBA) from accelerometers provide a valuable tool to quantify aspects of animal personality along the shy-bold continuum remotely. Without directly observing—and possibly disturbing—focal individuals, this approach allows measuring variability in animal personality, especially in species that are difficult to assess with experiments. Considering that accelerometers are often already built into GPS units, we recommend activating them at least during the initial days of tracking to estimate individual variation in general activity and, if possible, match them with a simple novelty experiment. Furthermore, information on individual behavioral types will help to facilitate mechanistic understanding of processes that drive spatial and ecological dynamics in heterogeneous landscapes.
Foraging is risky and involves balancing the benefits of resource acquisition with costs of predation. Optimal foraging theory predicts where, when and how long to forage in a given spatiotemporal distribution of risks and resources. However, significant variation in foraging behaviour and resource exploitation remain unexplained. Using single foragers in artificial landscapes of perceived risks and resources with diminishing returns, we aimed to test whether foraging behaviour and resource exploitation are adjusted to risk level, vary with risk during different components of foraging, and (co)vary among individuals. We quantified foraging behaviour and resource exploitation for 21 common voles (Microtus arvalis). By manipulating ground cover, we created simple landscapes of two food patches varying in perceived risk during feeding in a patch and/or while travelling between patches. Foraging of individuals was variable and adjusted to risk level and type. High risk during feeding reduced feeding duration and food consumption more strongly than risk while travelling. Risk during travelling modified the risk effects of feeding for changes between patches and resulting evenness of resource exploitation. Across risk conditions individuals differed consistently in when and how long they exploited resources and exposed themselves to risk. These among-individual differences in foraging behaviour were associated with consistent patterns of resource exploitation. Thus, different strategies in foraging-under-risk ultimately lead to unequal payoffs and might affect lower trophic levels in food webs. Inter-individual differences in foraging behaviour, i.e. foraging personalities, are an integral part of foraging behaviour and need to be fully integrated into optimal foraging theory.
The generation of monoclonal antibodies using an in vitro immunization approach is a promising alternative to conventional hybridoma technology. As recently published, the in vitro approach enables an antigen-specific activation of B lymphocytes within 10-12 d followed by immortalization and subsequent selection of hybridomas. This in vitro process can be further improved by using a three-dimensional surrounding to stabilize the complex microenvironment required for a successful immune reaction. In this study, the suitability of Geltrex as a material for the generation of monoclonal antigen-specific antibodies by in vitro immunization was analyzed. We could show that dendritic cells, B cells, and T cells were able to travel through and interact inside of the matrix, leading to the antigen-specific activation of T and B cells. For cell recovery and subsequent hybridoma technique the suitability of dispase and Corning cell recovery solution (CRS) was compared. In our experiments, the use of dispase resulted in a severe alteration of cell surface receptor expression patterns and significantly higher cell death, while we could not detect an adverse effect of Corning CRS. Finally, an easy approach for high-density cell culture was established by printing an alginate ring inside a cell culture vessel. The ring was filled with Geltrex, cells, and medium to ensure a sufficient supply during cultivation. Using this approach, we were able to generate monoclonal hybridomas that produce antigen-specific antibodies against ovalbumin and the SARS-CoV-2 nucleocapsid protein.
Die aktuelle COVID-19-Pandemie zeigt deutlich, wie sich Infektionskrankheiten weltweit verbreiten können. Neben Viruserkrankungen breiten sich auch multiresistente bakterielle Erreger weltweit aus. Dementsprechend besteht ein hoher Bedarf, durch frühzeitige Erkennung Erkrankte zu finden und Infektionswege zu unterbrechen.
Herkömmliche kulturelle Verfahren benötigen minimalinvasive bzw. invasive Proben und dauern für Screeningmaßnahmen zu lange. Deshalb werden schnelle, nichtinvasive Verfahren benötigt.
Im klassischen Griechenland verließen sich die Ärzte unter anderem auf ihren Geruchssinn, um Infektionen und andere Krankheiten zu differenzieren. Diese charakteristischen Gerüche sind flüchtige organische Substanzen (VOC), die im Rahmen des Metabolismus eines Organismus entstehen. Tiere, die einen besseren Geruchssinn haben, werden trainiert, bestimmte Krankheitserreger am Geruch zu unterscheiden. Allerdings ist der Einsatz von Tieren im klinischen Alltag nicht praktikabel. Es bietet sich an, auf technischem Weg diese VOCs zu analysieren.
Ein technisches Verfahren, diese VOCs zu unterscheiden, ist die Ionenmobilitätsspektrometrie gekoppelt mit einer multikapillaren Gaschromatographiesäule (MCC-IMS). Hier zeigte sich, dass es sich bei dem Verfahren um eine schnelle, sensitive und verlässliche Methode handelt.
Es ist bekannt, dass verschiedene Bakterien aufgrund des Metabolismus unterschiedliche VOCs und damit eigene spezifische Gerüche produzieren. Im ersten Schritt dieser Arbeit konnte gezeigt werden, dass die verschiedenen Bakterien in-vitro nach einer kurzen Inkubationszeitzeit von 90 Minuten anhand der VOCs differenziert werden können. Hier konnte analog zur Diagnose in biochemischen Testreihen eine hierarchische Klassifikation der Bakterien erfolgen.
Im Gegensatz zu Bakterien haben Viren keinen eigenen Stoffwechsel. Ob virusinfizierte Zellen andere VOCs als nicht-infizierte Zellen freisetzen, wurde an Zellkulturen überprüft. Hier konnte gezeigt werden, dass sich die Fingerprints der VOCs in Zellkulturen infizierter Zellen mit Respiratorischen Synzytial-Viren (RSV) von nicht-infizierten Zellen unterscheiden.
Virusinfektionen im intakten Organismus unterscheiden sich von den Zellkulturen dadurch, dass hier neben Veränderungen im Zellstoffwechsel auch durch Abwehrmechanismen VOCs freigesetzt werden können.
Zur Überprüfung, inwiefern sich Infektionen im intakten Organismus ebenfalls anhand VOCs unterscheiden lassen, wurde bei Patienten mit und ohne Nachweis einer Influenza A Infektion als auch bei Patienten mit Verdacht auf SARS-CoV-2 (Schweres-akutes-Atemwegssyndrom-Coronavirus Typ 2) Infektion die Atemluft untersucht. Sowohl Influenza-infizierte als auch SARS-CoV-2 infizierte Patienten konnten untereinander und von nicht-infizierten Patienten mittels MCC-IMS Analyse der Atemluft unterschieden werden.
Zusammenfassend erbringt die MCC-IMS ermutigende Resultate in der schnellen nichtinvasiven Erkennung von Infektionen sowohl in vitro als auch in vivo.
What Colin Reynolds could tell us about nutrient limitation, N:P ratios and eutrophication control
(2020)
Colin Reynolds exquisitely consolidated our understanding of driving forces shaping phytoplankton communities and those setting the upper limit to biomass yield, with limitation typically shifting from light in winter to phosphorus in spring. Nonetheless, co-limitation is frequently postulated from enhanced growth responses to enrichments with both N and P or from N:P ranging around the Redfield ratio, concluding a need to reduce both N and P in order to mitigate eutrophication. Here, we review the current understanding of limitation through N and P and of co-limitation. We conclude that Reynolds is still correct: (i) Liebig's law of the minimum holds and reducing P is sufficient, provided concentrations achieved are low enough; (ii) analyses of nutrient limitation need to exclude evidently non-limiting situations, i.e. where soluble P exceeds 3-10 mu g/l, dissolved N exceeds 100-130 mu g/l and total P and N support high biomass levels with self-shading causing light limitation; (iii) additionally decreasing N to limiting concentrations may be useful in specific situations (e.g. shallow waterbodies with high internal P and pronounced denitrification); (iv) management decisions require local, situation-specific assessments. The value of research on stoichiometry and co-limitation lies in promoting our understanding of phytoplankton ecophysiology and community ecology.
Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term “oxygen radical disease of prematurity”. Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28–32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.
Plant cell biology
(2021)
PIN-FORMED (PIN) polar protein localization directs transport of the growth and developmental regulator auxin in plants. Once established after cytokinesis, PIN polarity requires maintenance. Now, direct interactions between PIN, MAB4/MEL and PID proteins suggest self-reinforced maintenance of PIN polarity through limiting lateral diffusion.
Electrochemical biosensors employing natural and artificial heme peroxidases on semiconductors
(2020)
Heme peroxidases are widely used as biological recognition elements in electrochemical biosensors for hydrogen peroxide and phenolic compounds. Various nature-derived and fully synthetic heme peroxidase mimics have been designed and their potential for replacing the natural enzymes in biosensors has been investigated. The use of semiconducting materials as transducers can thereby offer new opportunities with respect to catalyst immobilization, reaction stimulation, or read-out. This review focuses on approaches for the construction of electrochemical biosensors employing natural heme peroxidases as well as various mimics immobilized on semiconducting electrode surfaces. It will outline important advances made so far as well as the novel applications resulting thereof.
We expressedDictyosteliumlamin (NE81) lacking both a functional nuclear localization signal and a CAAX-box for C-terminal lipid modification. This lamin mutant assembled into supramolecular, three-dimensional clusters in the cytosol that disassembled at the onset of mitosis and re-assembled in late telophase, thus mimicking the behavior of the endogenous protein. As disassembly is regulated by CDK1-mediated phosphorylation at serine 122, we generated a phosphomimetic S122E mutant called GFP-NE81-S122E-Delta NLS Delta CLIM. Surprisingly, during imaging, the fusion protein assembled into cytosolic clusters, similar to the protein lacking the phosphomimetic mutation. Clusters disassembled again in the darkness. Assembly could be induced with blue but not green or near ultraviolet light, and it was independent of the fusion tag. Assembly similarly occurred upon cell flattening. Earlier reports and own observations suggested that both blue light and cell flattening could result in a decrease of intracellular pH. Indeed, keeping the cells at low pH also reversibly induced cluster formation. Our results indicate that lamin assembly can be induced by various stress factors and that these are transduced via intracellular acidification. Although these effects have been shown in a phosphomimetic CDK1 mutant of theDictyosteliumlamin, they are likely relevant also for wild-type lamin.