Institut für Geowissenschaften
Refine
Year of publication
Document Type
- Article (2532)
- Doctoral Thesis (486)
- Postprint (120)
- Other (72)
- Review (51)
- Monograph/Edited Volume (33)
- Preprint (17)
- Conference Proceeding (12)
- Habilitation Thesis (12)
- Master's Thesis (5)
Keywords
- Holocene (43)
- climate change (40)
- erosion (26)
- Himalaya (22)
- Climate change (21)
- remote sensing (21)
- Pollen (20)
- Tibetan Plateau (20)
- Erdbeben (18)
- climate (18)
Institute
- Institut für Geowissenschaften (3347)
- Extern (51)
- Mathematisch-Naturwissenschaftliche Fakultät (11)
- Institut für Biochemie und Biologie (10)
- Institut für Chemie (10)
- Institut für Physik und Astronomie (8)
- Interdisziplinäres Zentrum für Musterdynamik und Angewandte Fernerkundung (7)
- Institut für Umweltwissenschaften und Geographie (5)
- Fachgruppe Politik- & Verwaltungswissenschaft (2)
- Institut für Mathematik (2)
Cities will play a key role in the grand challenge of nourishing a growing global population, because, due to their population density, they set the demand. To ensure that food systems are sustainable, as well as nourishing, one solution often suggested is to shorten their supply chains toward a regional rather than a global basis. While such regional systems may have a range of costs and benefits, we investigate the mitigation potential of regionalized urban food systems by examining the greenhouse gas emissions associated with food transport. Using data on food consumption for 7108 urban administrative units (UAUs), we simulate total transport emissions for both regionalized and globalized supply chains. In regionalized systems, the UAUs' demands are fulfilled by peripheral food production, whereas to simulate global supply chains, food demand is met from an international pool (where the origin can be any location globally). We estimate that regionalized systems could reduce current emissions from food transport. However, because longer supply chains benefit from maximizing comparative advantage, this emission reduction would require closing yield gaps, reducing food waste, shifting toward diversified farming, and consuming seasonal produce. Regionalization of food systems will be an essential component to limit global warming to well below 2 degrees C in the future.
Many of the volcanic plateau margins of the eastern, formerly glaciated, foreland of the Patagonian Andes are undermined by giant landslides (>= 10(8) m(3)). One cluster of such landslides extends along the margin of the Meseta del Lago Buenos Aires (MLBA) plateau that is formed mainly by Neogene-Quaternary basalts. The dry climate is at odds with numerous >2-km long earthflows nested within older and larger compound landslides. We present a hydrological analysis, a detailed geomorphic map, interpretations of exposed landslide interiors, and radiocarbon dating of the El Mirador landslide, which is one of the largest and morphologically most representative landslide. We find that the presence of lakes on top of the plateau, causing low infiltration rates, correlates negatively with the abundance of earthflows on compound landslides along the plateau margins. Field outcrops show that the pattern of compound landslides and earthflows is likely controlled by groundwater seepage at the contact between the basalts and underlying soft Miocene molasse. Numerous peat bogs store water and sediment and are more abundant in earthflow-affected areas than in their contributing catchment areas. <br /> Radiocarbon dates indicate that these earthflows displaced metre-thick layers of peat in the late Holocene (<2.5 ka). We conclude that earthflows of the MLBA plateau might be promising proxies of past hydroclimatic conditions in the Patagonian foreland, if strong earthquakes or gradual crustal stress changes due to glacioisostatic rebound can be ruled out.
Drainage divide networks
(2020)
Drainage divides are organized into tree-like networks that may record information about drainage divide mobility. However, views diverge about how to best assess divide mobility. Here, we apply a new approach of automatically extracting and ordering drainage divide networks from digital elevation models to results from landscape evolution model experiments. We compared landscapes perturbed by strike-slip faulting and spatiotemporal variations in erodibility to a reference model to assess which topographic metrics (hillslope relief, flow distance, and chi) are diagnostic of divide mobility. Results show that divide segments that are a minimum distance of similar to 5 km from river confluences strive to attain constant values of hillslope relief and flow distance to the nearest stream. Disruptions of such patterns can be related to mobile divides that are lower than stable divides, closer to streams, and often asymmetric in shape. In general, we observe that drainage divides high up in the network, i.e., at great distances from river confluences, are more susceptible to disruptions than divides closer to these confluences and are thus more likely to record disturbance for a longer time period. We found that across-divide differences in hillslope relief proved more useful for assessing divide migration than other tested metrics. However, even stable drainage divide networks exhibit across-divide differences in any of the studied topographic metrics. Finally, we propose a new metric to quantify the connectivity of divide junctions.
Dispersion-curve inversion of Rayleigh waves to infer subsurface shear-wave velocity is a long-standing problem in seismology. Due to nonlinearity and ill-posedness, sophisticated regularization techniques are required to solve the problem for a stable velocity model. We have formulated the problem as a minimization problem with nonlinear operator constraint and then solve it by using an inexact augmented Lagrangian method, taking advantage of the Haney-Tsai Dix-type relation (a global linear approximation of the nonlinear forward operator). This replaces the original regularized nonlinear problem with iterative minimization of a more tractable regularized linear problem followed by a nonlinear update of the phase velocity (data) in which the update can be performed accurately with any forward modeling engine, for example, the finite-element method. The algorithm allows discretizing the medium with thin layers (for the finite-element method) and thus omitting the layer thicknesses from the unknowns and also allows incorporating arbitrary regularizations to shape the desired velocity model. In this research, we use total variation regularization to retrieve the shear-wave velocity model. We use two synthetic and two real data examples to illustrate the performance of the inversion algorithm with total variation regularization. We find that the method is fast and stable, and it converges to the solution of the original nonlinear problem.
During the Cenozoic, global cooling and uplift of the Tian Shan, Pamir, and Tibetan plateau modified atmospheric circulation and reduced moisture supply to Central Asia. These changes led to aridification in the region during the Neogene. Afterwards, Quaternary glaciations led to modification of the landscape and runoff.
In the Issyk-Kul basin of the Kyrgyz Tian Shan, the sedimentary sequences reflect the development of the adjacent ranges and local climatic conditions. In this work, I reconstruct the late Miocene – early Pleistocene depositional environment, climate, and lake development in the Issyk-Kul basin using facies analyses and stable δ18O and δ13C isotopic records from sedimentary sections dated by magnetostratigraphy and 26Al/10Be isochron burial dating. Also, I present 10Be-derived millennial-scale modern and paleo-denudation rates from across the Kyrgyz Tian Shan and long-term exhumation rates calculated from published thermochronology data. This allows me to examine spatial and temporal changes in surface processes in the Kyrgyz Tian Shan.
In the Issyk-Kul basin, the style of fluvial deposition changed at ca. 7 Ma, and aridification in the basin commenced concurrently, as shown by magnetostratigraphy and the δ18O and δ13C data. Lake formation commenced on the southern side of the basin at ca. 5 Ma, followed by a ca. 2 Ma local depositional hiatus. 26Al/10Be isochron burial dating and paleocurrent analysis show that the Kungey range to the north of the basin grew eastward, leading to a change from fluvial-alluvial deposits to proximal alluvial fan conglomerates at 5-4 Ma in the easternmost part of the basin. This transition occurred at 2.6-2.8 Ma on the southern side of the basin, synchronously with the intensification of the Northern Hemisphere glaciation. The paleo-denudation rates from 2.7-2.0 Ma are as low as long-term exhumation rates, and only the millennial-scale denudation rates record an acceleration of denudation.
This work concludes that the growth of the ranges to the north of the basin led to creation of the topographic barrier at ca. 7 Ma and a subsequent aridification in the Issyk-Kul basin. Increased subsidence and local tectonically-induced river system reorganization on the southern side of the basin enabled lake formation at ca. 5 Ma, while growth of the Kungey range blocked westward-draining rivers and led to sediment starvation and lake expansion. Denudational response of the Kyrgyz Tian Shan landscape is delayed due to aridity and only substantial cooling during the late Quaternary glacial cycles led to notable acceleration of denudation. Currently, increased glacier reduction and runoff controls a more rapid denudation of the northern slope of the Terskey range compared to other ranges of the Kyrgyz Tian Shan.
Advances in hydrogravimetry
(2023)
The interest of the hydrological community in the gravimetric method has steadily increased within the last decade. This is reflected by numerous studies from many different groups with a broad range of approaches and foci. Many of those are traditionally rather hydrology-oriented groups who recognized gravimetry as a potential added value for their hydrological investigations. While this resulted in a variety of interesting and useful findings, contributing to extend the respective knowledge and confirming the methodological potential, on the other hand, many interesting and unresolved questions emerged.
This thesis manifests efforts, analyses and solutions carried out in this regard. Addressing and evaluating many of those unresolved questions, the research contributes to advancing hydrogravimetry, the combination of gravimetric and hydrological methods, in showing how gravimeters are a highly useful tool for applied hydrological field research.
In the first part of the thesis, traditional setups of stationary terrestrial superconducting gravimeters are addressed. They are commonly installed within a dedicated building, the impermeable structure of which shields the underlying soil from natural exchange of water masses (infiltration, evapotranspiration, groundwater recharge). As gravimeters are most sensitive to mass changes directly beneath the meter, this could impede their suitability for local hydrological process investigations, especially for near-surface water storage changes (WSC). By studying temporal local hydrological dynamics at a dedicated site equipped with traditional hydrological measurement devices, both below and next to the building, the impact of these absent natural dynamics on the gravity observations were quantified. A comprehensive analysis with both a data-based and model-based approach led to the development of an alternative method for dealing with this limitation. Based on determinable parameters, this approach can be transferred to a broad range of measurement sites where gravimeters are deployed in similar structures. Furthermore, the extensive considerations on this topic enabled a more profound understanding of this so called umbrella effect.
The second part of the thesis is a pilot study about the field deployment of a superconducting gravimeter. A newly developed field enclosure for this gravimeter was tested in an outdoor installation adjacent to the building used to investigate the umbrella effect. Analyzing and comparing the gravity observations from both indoor and outdoor gravimeters showed performance with respect to noise and stable environmental conditions was equivalent while the sensitivity to near-surface WSC was highly increased for the field deployed instrument. Furthermore it was demonstrated that the latter setup showed gravity changes independent of the depth where mass changes occurred, given their sufficiently wide horizontal extent. As a consequence, the field setup suits monitoring of WSC for both short and longer time periods much better. Based on a coupled data-modeling approach, its gravity time series was successfully used to infer and quantify local water budget components (evapotranspiration, lateral subsurface discharge) on the daily to annual time scale.
The third part of the thesis applies data from a gravimeter field deployment for applied hydrological process investigations. To this end, again at the same site, a sprinkling experiment was conducted in a 15 x 15 m area around the gravimeter. A simple hydro-gravimetric model was developed for calculating the gravity response resulting from water redistribution in the subsurface. It was found that, from a theoretical point of view, different subsurface water distribution processes (macro pore flow, preferential flow, wetting front advancement, bypass flow and perched water table rise) lead to a characteristic shape of their resulting gravity response curve. Although by using this approach it was possible to identify a dominating subsurface water distribution process for this site, some clear limitations stood out. Despite the advantage for field installations that gravimetry is a non-invasive and integral method, the problem of non-uniqueness could only be overcome by additional measurements (soil moisture, electric resistivity tomography) within a joint evaluation. Furthermore, the simple hydrological model was efficient for theoretical considerations but lacked the capability to resolve some heterogeneous spatial structures of water distribution up to a needed scale. Nevertheless, this unique setup for plot to small scale hydrological process research underlines the high potential of gravimetery and the benefit of a field deployment.
The fourth and last part is dedicated to the evaluation of potential uncertainties arising from the processing of gravity observations. The gravimeter senses all mass variations in an integral way, with the gravitational attraction being directly proportional to the magnitude of the change and inversely proportional to the square of the distance of the change. Consequently, all gravity effects (for example, tides, atmosphere, non-tidal ocean loading, polar motion, global hydrology and local hydrology) are included in an aggregated manner. To isolate the signal components of interest for a particular investigation, all non-desired effects have to be removed from the observations. This process is called reduction. The large-scale effects (tides, atmosphere, non-tidal ocean loading and global hydrology) cannot be measured directly and global model data is used to describe and quantify each effect. Within the reduction process, model errors and uncertainties propagate into the residual, the result of the reduction. The focus of this part of the thesis is quantifying the resulting, propagated uncertainty for each individual correction. Different superconducting gravimeter installations were evaluated with respect to their topography, distance to the ocean and the climate regime. Furthermore, different time periods of aggregated gravity observation data were assessed, ranging from 1 hour up to 12 months. It was found that uncertainties were highest for a frequency of 6 months and smallest for hourly frequencies. Distance to the ocean influences the uncertainty of the non-tidal ocean loading component, while geographical latitude affects uncertainties of the global hydrological component. It is important to highlight that the resulting correction-induced uncertainties in the residual have the potential to mask the signal of interest, depending on the signal magnitude and its frequency. These findings can be used to assess the value of gravity data across a range of applications and geographic settings.
In an overarching synthesis all results and findings are discussed with a general focus on their added value for bringing hydrogravimetric field research to a new level. The conceptual and applied methodological benefits for hydrological studies are highlighted. Within an outlook for future setups and study designs, it was once again shown what enormous potential is offered by gravimeters as hydrological field tools.
The Andean Cordillera is a mountain range located at the western South American margin and is part of the Eastern- Circum-Pacific orogenic Belt. The ~7000 km long mountain range is one of the longest on Earth and hosts the second largest orogenic plateau in the world, the Altiplano-Puna plateau. The Andes are known as a non-collisional subduction-type orogen which developed as a result of the interaction between the subducted oceanic Nazca plate and the South American continental plate. The different Andean segments exhibit along-strike variations of morphotectonic provinces characterized by different elevations, volcanic activity, deformation styles, crustal thickness, shortening magnitude and oceanic plate geometry. Most of the present-day elevation can be explained by crustal shortening in the last ~50 Ma, with the shortening magnitude decreasing from ~300 km in the central (15°S-30°S) segment to less than half that in the southern part (30°S-40°S). Several factors were proposed that might control the magnitude and acceleration of shortening of the Central Andes in the last 15 Ma. One important factor is likely the slab geometry. At 27-33°S, the slab dips horizontally at ~100 km depth due to the subduction of the buoyant Juan Fernandez Ridge, forming the Pampean flat-slab. This horizontal subduction is thought to influence the thermo-mechanical state of the Sierras Pampeanas foreland, for instance, by strengthening the lithosphere and promoting the thick-skinned propagation of deformation to the east, resulting in the uplift of the Sierras Pampeanas basement blocks. The flat-slab has migrated southwards from the Altiplano latitude at ~30 Ma to its present-day position and the processes and consequences associated to its passage on the contemporaneous acceleration of the shortening rate in Central Andes remain unclear. Although the passage of the flat-slab could offer an explanation to the acceleration of the shortening, the timing does not explain the two pulses of shortening at about 15 Ma and 4 Ma that are suggested from geological observations. I hypothesize that deformation in the Central Andes is controlled by a complex interaction between the subduction dynamics of the Nazca plate and the dynamic strengthening and weakening of the South American plate due to several upper plate processes. To test this hypothesis, a detailed investigation into the role of the flat-slab, the structural inheritance of the continental plate, and the subduction dynamics in the Andes is needed. Therefore, I have built two classes of numerical thermo-mechanical models: (i) The first class of models are a series of generic E-W-oriented high-resolution 2D subduction models thatinclude flat subduction in order to investigate the role of the subduction dynamics on the temporal variability of the shortening rate in the Central Andes at Altiplano latitudes (~21°S). The shortening rate from the models was then validated with the observed tectonic shortening rate in the Central Andes. (ii) The second class of models are a series of 3D data-driven models of the present-day Pampean flat-slab configuration and the Sierras Pampeanas (26-42°S). The models aim to investigate the relative contribution of the present-day flat subduction and inherited structures in the continental lithosphere on the strain localization. Both model classes were built using the advanced finite element geodynamic code ASPECT.
The first main finding of this work is to suggest that the temporal variability of shortening in the Central Andes is primarily controlled by the subduction dynamics of the Nazca plate while it penetrates into the mantle transition zone. These dynamics depends on the westward velocity of the South American plate that provides the main crustal shortening force to the Andes and forces the trench to retreat. When the subducting plate reaches the lower mantle, it buckles on it-self until the forced trench retreat causes the slab to steepen in the upper mantle in contrast with the classical slab-anchoring model. The steepening of the slab hinders the trench causing it to resist the advancing South American plate, resulting in the pulsatile shortening. This buckling and steepening subduction regime could have been initiated because of the overall decrease in the westwards velocity of the South American plate. In addition, the passage of the flat-slab is required to promote the shortening of the continental plate because flat subduction scrapes the mantle lithosphere, thus weakening the continental plate. This process contributes to the efficient shortening when the trench is hindered, followed by mantle lithosphere delamination at ~20 Ma. Finally, the underthrusting of the Brazilian cratonic shield beneath the orogen occurs at ~11 Ma due to the mechanical weakening of the thick sediments covered the shield margin, and due to the decreasing resistance of the weakened lithosphere of the orogen.
The second main finding of this work is to suggest that the cold flat-slab strengthens the overriding continental lithosphere and prevents strain localization. Therefore, the deformation is transmitted to the eastern front of the flat-slab segment by the shear stress operating at the subduction interface, thus the flat-slab acts like an indenter that “bulldozes” the mantle-keel of the continental lithosphere. The offset in the propagation of deformation to the east between the flat and steeper slab segments in the south causes the formation of a transpressive dextral shear zone. Here, inherited faults of past tectonic events are reactivated and further localize the deformation in an en-echelon strike-slip shear zone, through a mechanism that I refer to as “flat-slab conveyor”. Specifically, the shallowing of the flat-slab causes the lateral deformation, which explains the timing of multiple geological events preceding the arrival of the flat-slab at 33°S. These include the onset of the compression and of the transition between thin to thick-skinned deformation styles resulting from the crustal contraction of the crust in the Sierras Pampeanas some 10 and 6 Myr before the Juan Fernandez Ridge collision at that latitude, respectively.
The shallow Earth’s layers are at the interplay of many physical processes: some being driven by atmospheric forcing (precipitation, temperature...) whereas others take their origins at depth, for instance ground shaking due to seismic activity. These forcings cause the subsurface to continuously change its mechanical properties, therefore modulating the strength of the surface geomaterials and hydrological fluxes. Because our societies settle and rely on the layers hosting these time-dependent properties, constraining the hydro-mechanical dynamics of the shallow subsurface is crucial for our future geographical development. One way to investigate the ever-changing physical changes occurring under our feet is through the inference of seismic velocity changes from ambient noise, a technique called seismic interferometry. In this dissertation, I use this method to monitor the evolution of groundwater storage and damage induced by earthquakes. Two research lines are investigated that comprise the key controls of groundwater recharge in steep landscapes and the predictability and duration of the transient physical properties due to earthquake ground shaking. These two types of dynamics modulate each other and influence the velocity changes in ways that are challenging to disentangle. A part of my doctoral research also addresses this interaction. Seismic data from a range of field settings spanning several climatic conditions (wet to arid climate) in various seismic-prone areas are considered. I constrain the obtained seismic velocity time-series using simple physical models, independent dataset, geophysical tools and nonlinear analysis. Additionally, a methodological development is proposed to improve the time-resolution of passive seismic monitoring.
Carbonates carried in subducting slabs may play a major role in sourcing and storing carbon in the deep Earth’s interior. Current estimates indicate that between 40 to 66 million tons of carbon per year enter subduction zones, but it is uncertain how much of it reaches the lower mantle. It appears that most of this carbon might be extracted from subducting slabs at the mantle wedge and only a limited amount continues deeper and eventually reaches the deep mantle. However, estimations on deeply subducted carbon broadly range from 0.0001 to 52 million tons of carbon per year. This disparity is primarily due to the limited understanding of the survival of carbonate minerals during their transport to deep mantle conditions. Indeed, carbon has very low solubility in mantle silicates, therefore it is expected to be stored primarily in accessory phases such as carbonates. Among those carbonates, magnesite (MgCO3), as a single phase, is the most stable under all mantle conditions. However, experimental investigation on the stability of magnesite in contact with SiO2 at lower mantle conditions suggests that magnesite is stable only along a cold subducted slab geotherm. Furthermore, our understanding of magnesite’s stability when interacting with more complex mantle silicate phases remains incomplete. In the first part of this dissertation, laser-heated diamond anvil cells and multi-anvil apparatus experiments were performed to investigate the stability of magnesite in contact with iron-bearing mantle silicates. Sub-solidus reactions, melting, decarbonation and diamond formation were examined from shallow to mid-lower mantle conditions (25 to 68 GPa; 1300 to 2000 K). Multi-anvil experiments at 25 GPa show the formation of carbonate-rich melt, bridgmanite, and stishovite with melting occurring at a temperature corresponding to all geotherms except the coldest one. In situ X-ray diffraction, in laser-heating diamond anvil cells experiments, shows crystallization of bridgmanite and stishovite but no melt phase was detected in situ at high temperatures. To detect decarbonation phases such as diamond, Raman spectroscopy was used. Crystallization of diamonds is observed as a sub-solidus process even at temperatures relevant and lower than the coldest slab geotherm (1350 K at 33 GPa). Data obtained from this work suggest that magnesite is unstable in contact with the surrounding peridotite mantle in the upper-most lower mantle. The presence of magnesite instead induces melting under oxidized conditions and/or foster diamond formation under more reduced conditions, at depths ∼700 km. Consequently, carbonates will be removed from the carbonate-rich slabs at shallow lower mantle conditions, where subducted slabs can stagnate. Therefore, the transport of carbonate to deeper depths will be restricted, supporting the presence of a barrier for carbon subduction at the top of the lower mantle. Moreover, the reduction of magnesite, forming diamonds provides additional evidence that super-deep diamond crystallization is related to the reduction of carbonates or carbonated-rich melt.
The second part of this dissertation presents the development of a portable laser-heating system optimized for X-ray emission spectroscopy (XES) or nuclear inelastic scattering (NIS) spectroscopy with signal collection at near 90◦. The laser-heated diamond anvil cell is the only static pressure device that can replicate the pressure and temperatures of the Earth’s lower mantle and core. The high temperatures are reached by using high-powered lasers focused on the sample contained between the diamond anvils. Moreover, diamonds’ transparency to X-rays enables in situ X-ray spectroscopy measurements that can probe the sample under high-temperature and high-pressure conditions. Therefore, the development of portable laser-heating systems has linked high-pressure and temperature research with high-resolution X-ray spectroscopy techniques to synchrotron beamlines that do not have a dedicated, permanent, laser-heating system. A general description of the system is provided, as well as details on the use of a parabolic mirror as a reflective imaging objective for on-axis laser heating and radiospectrometric temperature measurements with zero attenuation of incoming X-rays. The parabolic mirror improves the accuracy of temperature measurements free from chromatic aberrations in a wide spectral range and its perforation permits in situ X-rays measurement at synchrotron facilities. The parabolic mirror is a well-suited alternative to refractive objectives in laser heating systems, which will facilitate future applications in the use of CO2 lasers.
A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications.