• search hit 84 of 84
Back to Result List

Topological influence and locality in swap schelling games

  • Residential segregation is a wide-spread phenomenon that can be observed in almost every major city. In these urban areas residents with different racial or socioeconomic background tend to form homogeneous clusters. Schelling's famous agent-based model for residential segregation explains how such clusters can form even if all agents are tolerant, i.e., if they agree to live in mixed neighborhoods. For segregation to occur, all it needs is a slight bias towards agents preferring similar neighbors. Very recently, Schelling's model has been investigated from a game-theoretic point of view with selfish agents that strategically select their residential location. In these games, agents can improve on their current location by performing a location swap with another agent who is willing to swap. We significantly deepen these investigations by studying the influence of the underlying topology modeling the residential area on the existence of equilibria, the Price of Anarchy and on the dynamic properties of the resultingResidential segregation is a wide-spread phenomenon that can be observed in almost every major city. In these urban areas residents with different racial or socioeconomic background tend to form homogeneous clusters. Schelling's famous agent-based model for residential segregation explains how such clusters can form even if all agents are tolerant, i.e., if they agree to live in mixed neighborhoods. For segregation to occur, all it needs is a slight bias towards agents preferring similar neighbors. Very recently, Schelling's model has been investigated from a game-theoretic point of view with selfish agents that strategically select their residential location. In these games, agents can improve on their current location by performing a location swap with another agent who is willing to swap. We significantly deepen these investigations by studying the influence of the underlying topology modeling the residential area on the existence of equilibria, the Price of Anarchy and on the dynamic properties of the resulting strategic multi-agent system. Moreover, as a new conceptual contribution, we also consider the influence of locality, i.e., if the location swaps are restricted to swaps of neighboring agents. We give improved almost tight bounds on the Price of Anarchy for arbitrary underlying graphs and we present (almost) tight bounds for regular graphs, paths and cycles. Moreover, we give almost tight bounds for grids, which are commonly used in empirical studies. For grids we also show that locality has a severe impact on the game dynamics.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Davide Bilo, Vittorio Bilo, Pascal LenznerGND, Louise MolitorORCiDGND
DOI:https://doi.org/10.1007/s10458-022-09573-7
ISSN:1387-2532
ISSN:1573-7454
Title of parent work (English):Autonomous Agents and Multi-Agent Systems
Publisher:Springer
Place of publishing:Dordrecht
Publication type:Article
Language:English
Date of first publication:2022/08/16
Publication year:2022
Release date:2024/08/12
Tag:Schelling's segregation model; game dynamics; non-cooperative games; price of anarchy; residential segregation
Volume:36
Issue:2
Article number:47
Number of pages:60
Funding institution:Projekt DEAL; University of Sassari
Organizational units:Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH
DDC classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
3 Sozialwissenschaften / 30 Sozialwissenschaften, Soziologie / 300 Sozialwissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.