000 Informatik, Informationswissenschaft, allgemeine Werke
Refine
Year of publication
Document Type
- Article (149)
- Other (117)
- Doctoral Thesis (82)
- Part of a Book (11)
- Conference Proceeding (9)
- Postprint (9)
- Monograph/Edited Volume (5)
- Master's Thesis (2)
- Habilitation Thesis (1)
- Part of Periodical (1)
Is part of the Bibliography
- yes (388)
Keywords
- MOOC (7)
- machine learning (7)
- Answer set programming (5)
- E-Learning (5)
- fabrication (5)
- 3D printing (4)
- Answer Set Programming (4)
- Blockchain (4)
- Machine Learning (4)
- data profiling (4)
Institute
- Hasso-Plattner-Institut für Digital Engineering GmbH (180)
- Institut für Informatik und Computational Science (86)
- Hasso-Plattner-Institut für Digital Engineering gGmbH (71)
- Wirtschaftswissenschaften (22)
- Institut für Physik und Astronomie (8)
- Universitätsbibliothek (5)
- Institut für Mathematik (3)
- Department Linguistik (2)
- Institut für Geowissenschaften (2)
- Philosophische Fakultät (2)
In order to achieve their business goals, organizations heavily rely on the operational excellence of their business processes. In traditional scenarios, business processes are usually well-structured, clearly specifying when and how certain tasks have to be executed. Flexible and knowledge-intensive processes are gathering momentum, where a knowledge worker drives the execution of a process case and determines the exact process path at runtime. In the case of an exception, the knowledge worker decides on an appropriate handling. While there is initial work on exception handling in well-structured business processes, exceptions in case management have not been sufficiently researched. This paper proposes an exception handling framework for stage-oriented case management languages, namely Guard Stage Milestone Model, Case Management Model and Notation, and Fragment-based Case Management. The effectiveness of the framework is evaluated with two real-world use cases showing that it covers all relevant exceptions and proposed handling strategies.
In discrete manufacturing, the knowledge about causal relationships makes it possible to avoid unforeseen production downtimes by identifying their root causes. Learning causal structures from real-world settings remains challenging due to high-dimensional data, a mix of discrete and continuous variables, and requirements for preprocessing log data under the causal perspective. In our work, we address these challenges proposing a process for causal reasoning based on raw machine log data from production monitoring. Within this process, we define a set of transformation rules to extract independent and identically distributed observations. Further, we incorporate a variable selection step to handle high-dimensionality and a discretization step to include continuous variables. We enrich a commonly used causal structure learning algorithm with domain-related orientation rules, which provides a basis for causal reasoning. We demonstrate the process on a real-world dataset from a globally operating precision mechanical engineering company. The dataset contains over 40 million log data entries from production monitoring of a single machine. In this context, we determine the causal structures embedded in operational processes. Further, we examine causal effects to support machine operators in avoiding unforeseen production stops, i.e., by detaining machine operators from drawing false conclusions on impacting factors of unforeseen production stops based on experience.
RHEEMix in the data jungle
(2020)
Data analytics are moving beyond the limits of a single platform. In this paper, we present the cost-based optimizer of Rheem, an open-source cross-platform system that copes with these new requirements. The optimizer allocates the subtasks of data analytic tasks to the most suitable platforms. Our main contributions are: (i) a mechanism based on graph transformations to explore alternative execution strategies; (ii) a novel graph-based approach to determine efficient data movement plans among subtasks and platforms; and (iii) an efficient plan enumeration algorithm, based on a novel enumeration algebra. We extensively evaluate our optimizer under diverse real tasks. We show that our optimizer can perform tasks more than one order of magnitude faster when using multiple platforms than when using a single platform.
Knowledge graphs are structured repositories of knowledge that store facts
about the general world or a particular domain in terms of entities and
their relationships. Owing to the heterogeneity of use cases that are served
by them, there arises a need for the automated construction of domain-
specific knowledge graphs from texts. While there have been many research
efforts towards open information extraction for automated knowledge graph
construction, these techniques do not perform well in domain-specific settings.
Furthermore, regardless of whether they are constructed automatically from
specific texts or based on real-world facts that are constantly evolving, all
knowledge graphs inherently suffer from incompleteness as well as errors in
the information they hold.
This thesis investigates the challenges encountered during knowledge graph
construction and proposes techniques for their curation (a.k.a. refinement)
including the correction of semantic ambiguities and the completion of missing
facts. Firstly, we leverage existing approaches for the automatic construction
of a knowledge graph in the art domain with open information extraction
techniques and analyse their limitations. In particular, we focus on the
challenging task of named entity recognition for artwork titles and show
empirical evidence of performance improvement with our proposed solution
for the generation of annotated training data.
Towards the curation of existing knowledge graphs, we identify the issue of
polysemous relations that represent different semantics based on the context.
Having concrete semantics for relations is important for downstream appli-
cations (e.g. question answering) that are supported by knowledge graphs.
Therefore, we define the novel task of finding fine-grained relation semantics
in knowledge graphs and propose FineGReS, a data-driven technique that
discovers potential sub-relations with fine-grained meaning from existing pol-
ysemous relations. We leverage knowledge representation learning methods
that generate low-dimensional vectors (or embeddings) for knowledge graphs
to capture their semantics and structure. The efficacy and utility of the
proposed technique are demonstrated by comparing it with several baselines
on the entity classification use case.
Further, we explore the semantic representations in knowledge graph embed-
ding models. In the past decade, these models have shown state-of-the-art
results for the task of link prediction in the context of knowledge graph comple-
tion. In view of the popularity and widespread application of the embedding
techniques not only for link prediction but also for different semantic tasks,
this thesis presents a critical analysis of the embeddings by quantitatively
measuring their semantic capabilities. We investigate and discuss the reasons
for the shortcomings of embeddings in terms of the characteristics of the
underlying knowledge graph datasets and the training techniques used by
popular models.
Following up on this, we propose ReasonKGE, a novel method for generating
semantically enriched knowledge graph embeddings by taking into account the
semantics of the facts that are encapsulated by an ontology accompanying the
knowledge graph. With a targeted, reasoning-based method for generating
negative samples during the training of the models, ReasonKGE is able to
not only enhance the link prediction performance, but also reduce the number
of semantically inconsistent predictions made by the resultant embeddings,
thus improving the quality of knowledge graphs.
EMOOCs 2023
(2023)
From June 14 to June 16, 2023, Hasso Plattner Institute, Potsdam, hosted the eighth European MOOC Stakeholder Summit (EMOOCs 2023).
The pandemic is fortunately over. It has once again shown how important digital education is. How well-prepared a country was could be seen in our schools, universities, and companies. In different countries, the problems manifested themselves differently. The measures and approaches to solving the problems varied accordingly. Digital education, whether micro-credentials, MOOCs, blended learning formats, or other e-learning tools, received a major boost.
EMOOCs 2023 focusses on the effects of this emergency situation. How has it affected the development and delivery of MOOCs and other e-learning offerings all over Europe? Which projects can serve as models for successful digital learning and teaching? Which roles can MOOCs and micro-credentials bear in the current business transformation? Is there a backlash to the routine we knew from pre-Corona times? Or have many things become firmly established in the meantime, e.g. remote work, hybrid conferences, etc.?
Furthermore, EMOOCs 2023 has a closer look at the development and formalization of digital learning. Micro-credentials are just the starting point. Further steps in this direction would be complete online study programs or full online universities.
Another main topic is the networking of learning offers and the standardization of formats and metadata. Examples of fruitful cooperations are the MOOChub, the European MOOC Consortium, and the Common Micro-Credential Framework.
The learnings, derived from practical experience and research, are explored in EMOOCs 2023 in four tracks and additional workshops, covering various aspects of this field. In this publication, we present papers from the conference’s Research & Experience Track, the Business Track and the International Track.
An unceasing problem of our prevailing society is the fair division of goods. The problem of proportional cake cutting focuses on dividing a heterogeneous and divisible resource, the cake, among n players who value pieces according to their own measure function. The goal is to assign each player a not necessarily connected part of the cake that the player evaluates at least as much as her proportional share. <br /> In this article, we investigate the problem of proportional division with unequal shares, where each player is entitled to receive a predetermined portion of the cake. Our main contribution is threefold. First we present a protocol for integer demands, which delivers a proportional solution in fewer queries than all known protocols. By giving a matching lower bound, we then show that our protocol is asymptotically the fastest possible. Finally, we turn to irrational demands and solve the proportional cake cutting problem by reducing it to the same problem with integer demands only. All results remain valid in a highly general cake cutting model, which can be of independent interest.
While supporting the execution of business processes, information systems record event logs. Conformance checking relies on these logs to analyze whether the recorded behavior of a process conforms to the behavior of a normative specification. A key assumption of existing conformance checking techniques, however, is that all events are associated with timestamps that allow to infer a total order of events per process instance. Unfortunately, this assumption is often violated in practice. Due to synchronization issues, manual event recordings, or data corruption, events are only partially ordered. In this paper, we put forward the problem of partial order resolution of event logs to close this gap. It refers to the construction of a probability distribution over all possible total orders of events of an instance. To cope with the order uncertainty in real-world data, we present several estimators for this task, incorporating different notions of behavioral abstraction. Moreover, to reduce the runtime of conformance checking based on partial order resolution, we introduce an approximation method that comes with a bounded error in terms of accuracy. Our experiments with real-world and synthetic data reveal that our approach improves accuracy over the state-of-the-art considerably.
Drinking is different!
(2022)
Locus of control (LOC) measures how much an individual believes in the causal relationship between her own actions and her life’s outcomes. While earlier literature has shown that an increasing internal LOC is associated with increased health-conscious behavior in domains such as smoking, exercise or diets, we find that drinking seems to be different. Using very informative German panel data, we extend and generalize previous findings and find a significant positive association between having an internal LOC and the probability of occasional and regular drinking for men and women. An increase in an individual’s LOC by one standard deviation increases the probability of occasional or regular drinking on average by 3.4% for men and 6.9% for women. Using a decomposition method, we show that roughly a quarter of this association can be explained by differences in the social activities between internal and external individuals.
Due to anthropogenic greenhouse gas emissions, Earth’s average surface temperature is steadily increasing. As a consequence, many weather extremes are likely to become more frequent and intense. This poses a threat to natural and human systems, with local impacts capable of destroying exposed assets and infrastructure, and disrupting economic and societal activity. Yet, these effects are not locally confined to the directly affected regions, as they can trigger indirect economic repercussions through loss propagation along supply chains. As a result, local extremes yield a potentially global economic response. To build economic resilience and design effective adaptation measures that mitigate adverse socio-economic impacts of ongoing climate change, it is crucial to gain a comprehensive understanding of indirect impacts and the underlying economic mechanisms.
Presenting six articles in this thesis, I contribute towards this understanding. To this end, I expand on local impacts under current and future climate, the resulting global economic response, as well as the methods and tools to analyze this response.
Starting with a traditional assessment of weather extremes under climate change, the first article investigates extreme snowfall in the Northern Hemisphere until the end of the century. Analyzing an ensemble of global climate model projections reveals an increase of the most extreme snowfall, while mean snowfall decreases.
Assessing repercussions beyond local impacts, I employ numerical simulations to compute indirect economic effects from weather extremes with the numerical agent-based shock propagation model Acclimate. This model is used in conjunction with the recently emerged storyline framework, which involves analyzing the impacts of a particular reference extreme event and comparing them to impacts in plausible counterfactual scenarios under various climate or socio-economic conditions. Using this approach, I introduce three primary storylines that shed light on the complex mechanisms underlying economic loss propagation.
In the second and third articles of this thesis, I analyze storylines for the historical Hurricanes Sandy (2012) and Harvey (2017) in the USA. For this, I first estimate local economic output losses and then simulate the resulting global economic response with Acclimate. The storyline for Hurricane Sandy thereby focuses on global consumption price anomalies and the resulting changes in consumption. I find that the local economic disruption leads to a global wave-like economic price ripple, with upstream effects propagating in the supplier direction and downstream effects in the buyer direction. Initially, an upstream demand reduction causes consumption price decreases, followed by a downstream supply shortage and increasing prices, before the anomalies decay in a normalization phase. A dominant upstream or downstream effect leads to net consumption gains or losses of a region, respectively. Moreover, I demonstrate that a longer direct economic shock intensifies the downstream effect for many regions, leading to an overall consumption loss.
The third article of my thesis builds upon the developed loss estimation method by incorporating projections to future global warming levels. I use these projections to explore how the global production response to Hurricane Harvey would change under further increased global warming. The results show that, while the USA is able to nationally offset direct losses in the reference configuration, other countries have to compensate for increasing shares of counterfactual future losses. This compensation is mainly achieved by large exporting countries, but gradually shifts towards smaller regions. These findings not only highlight the economy’s ability to flexibly mitigate disaster losses to a certain extent, but also reveal the vulnerability and economic disadvantage of regions that are exposed to extreme weather events.
The storyline in the fourth article of my thesis investigates the interaction between global economic stress and the propagation of losses from weather extremes. I examine indirect impacts of weather extremes — tropical cyclones, heat stress, and river floods — worldwide under two different economic conditions: an unstressed economy and a globally stressed economy, as seen during the Covid-19 pandemic. I demonstrate that the adverse effects of weather extremes on global consumption are strongly amplified when the economy is under stress. Specifically, consumption losses in the USA and China double and triple, respectively, due to the global economy’s decreased capacity for disaster loss compensation. An aggravated scarcity intensifies the price response, causing consumption losses to increase.
Advancing on the methods and tools used here, the final two articles in my thesis extend the agent-based model Acclimate and formalize the storyline approach. With the model extension described in the fifth article, regional consumers make rational choices on the goods bought such that their utility is maximized under a constrained budget. In an out-of-equilibrium economy, these rational consumers are shown to temporarily increase consumption of certain goods in spite of rising prices.
The sixth article of my thesis proposes a formalization of the storyline framework, drawing on multiple studies including storylines presented in this thesis. The proposed guideline defines eight central elements that can be used to construct a storyline.
Overall, this thesis contributes towards a better understanding of economic repercussions of weather extremes. It achieves this by providing assessments of local direct impacts, highlighting mechanisms and impacts of loss propagation, and advancing on methods and tools used.
We elaborate on the possibilities and needs to integrate design thinking into requirements engineering, drawing from our research and project experiences. We suggest three approaches for tailoring and integrating design thinking and requirements engineering with complementary synergies and point at open challenges for research and practice.