000 Informatik, Informationswissenschaft, allgemeine Werke
Refine
Year of publication
Document Type
- Other (105)
- Article (86)
- Doctoral Thesis (62)
- Part of a Book (10)
- Postprint (9)
- Conference Proceeding (7)
- Monograph/Edited Volume (5)
- Habilitation Thesis (1)
- Master's Thesis (1)
- Part of Periodical (1)
Is part of the Bibliography
- yes (287)
Keywords
- Answer set programming (4)
- Blockchain (4)
- E-Learning (4)
- MOOC (4)
- Machine Learning (4)
- duplicate detection (4)
- fabrication (4)
- machine learning (4)
- 3D printing (3)
- Algorithms (3)
Institute
- Hasso-Plattner-Institut für Digital Engineering GmbH (154)
- Institut für Informatik und Computational Science (61)
- Hasso-Plattner-Institut für Digital Engineering gGmbH (32)
- Wirtschaftswissenschaften (20)
- Institut für Physik und Astronomie (8)
- Institut für Mathematik (3)
- Institut für Geowissenschaften (2)
- Philosophische Fakultät (2)
- Universitätsbibliothek (2)
- Dezernat 2: Studienangelegenheiten (1)
Boolean Satisfiability (SAT) is one of the problems at the core of theoretical computer science. It was the first problem proven to be NP-complete by Cook and, independently, by Levin. Nowadays it is conjectured that SAT cannot be solved in sub-exponential time. Thus, it is generally assumed that SAT and its restricted version k-SAT are hard to solve. However, state-of-the-art SAT solvers can solve even huge practical instances of these problems in a reasonable amount of time.
Why is SAT hard in theory, but easy in practice? One approach to answering this question is investigating the average runtime of SAT. In order to analyze this average runtime the random k-SAT model was introduced. The model generates all k-SAT instances with n variables and m clauses with uniform probability. Researching random k-SAT led to a multitude of insights and tools for analyzing random structures in general. One major observation was the emergence of the so-called satisfiability threshold: A phase transition point in the number of clauses at which the generated formulas go from asymptotically almost surely satisfiable to asymptotically almost surely unsatisfiable. Additionally, instances around the threshold seem to be particularly hard to solve.
In this thesis we analyze a more general model of random k-SAT that we call non-uniform random k-SAT. In contrast to the classical model each of the n Boolean variables now has a distinct probability of being drawn. For each of the m clauses we draw k variables according to the variable distribution and choose their signs uniformly at random. Non-uniform random k-SAT gives us more control over the distribution of Boolean variables in the resulting formulas. This allows us to tailor distributions to the ones observed in practice. Notably, non-uniform random k-SAT contains the previously proposed models random k-SAT, power-law random k-SAT and geometric random k-SAT as special cases.
We analyze the satisfiability threshold in non-uniform random k-SAT depending on the variable probability distribution. Our goal is to derive conditions on this distribution under which an equivalent of the satisfiability threshold conjecture holds. We start with the arguably simpler case of non-uniform random 2-SAT. For this model we show under which conditions a threshold exists, if it is sharp or coarse, and what the leading constant of the threshold function is. These are exactly the three ingredients one needs in order to prove or disprove the satisfiability threshold conjecture. For non-uniform random k-SAT with k=3 we only prove sufficient conditions under which a threshold exists. We also show some properties of the variable probabilities under which the threshold is sharp in this case. These are the first results on the threshold behavior of non-uniform random k-SAT.
Individuals have an intrinsic need to express themselves to other humans within a given community by sharing their experiences, thoughts, actions, and opinions. As a means, they mostly prefer to use modern online social media platforms such as Twitter, Facebook, personal blogs, and Reddit. Users of these social networks interact by drafting their own statuses updates, publishing photos, and giving likes leaving a considerable amount of data behind them to be analyzed. Researchers recently started exploring the shared social media data to understand online users better and predict their Big five personality traits: agreeableness, conscientiousness, extraversion, neuroticism, and openness to experience. This thesis intends to investigate the possible relationship between users’ Big five personality traits and the published information on their social media profiles. Facebook public data such as linguistic status updates, meta-data of likes objects, profile pictures, emotions, or reactions records were adopted to address the proposed research questions. Several machine learning predictions models were constructed with various experiments to utilize the engineered features correlated with the Big 5 Personality traits. The final predictive performances improved the prediction accuracy compared to state-of-the-art approaches, and the models were evaluated based on established benchmarks in the domain. The research experiments were implemented while ethical and privacy points were concerned. Furthermore, the research aims to raise awareness about privacy between social media users and show what third parties can reveal about users’ private traits from what they share and act on different social networking platforms.
In the second part of the thesis, the variation in personality development is studied within a cross-platform environment such as Facebook and Twitter platforms. The constructed personality profiles in these social platforms are compared to evaluate the effect of the used platforms on one user’s personality development. Likewise, personality continuity and stability analysis are performed using two social media platforms samples. The implemented experiments are based on ten-year longitudinal samples aiming to understand users’ long-term personality development and further unlock the potential of cooperation between psychologists and data scientists.
With the downscaling of CMOS technologies, the radiation-induced Single Event Transient (SET) effects in combinational logic have become a critical reliability issue for modern integrated circuits (ICs) intended for operation under harsh radiation conditions. The SET pulses generated in combinational logic may propagate through the circuit and eventually result in soft errors. It has thus become an imperative to address the SET effects in the early phases of the radiation-hard IC design. In general, the soft error mitigation solutions should accommodate both static and dynamic measures to ensure the optimal utilization of available resources. An efficient soft-error-aware design should address synergistically three main aspects: (i) characterization and modeling of soft errors, (ii) multi-level soft error mitigation, and (iii) online soft error monitoring. Although significant results have been achieved, the effectiveness of SET characterization methods, accuracy of predictive SET models, and efficiency of SET mitigation measures are still critical issues. Therefore, this work addresses the following topics: (i) Characterization and modeling of SET effects in standard combinational cells, (ii) Static mitigation of SET effects in standard combinational cells, and (iii) Online particle detection, as a support for dynamic soft error mitigation.
Since the standard digital libraries are widely used in the design of radiation-hard ICs, the characterization of SET effects in standard cells and the availability of accurate SET models for the Soft Error Rate (SER) evaluation are the main prerequisites for efficient radiation-hard design. This work introduces an approach for the SPICE-based standard cell characterization with the reduced number of simulations, improved SET models and optimized SET sensitivity database. It has been shown that the inherent similarities in the SET response of logic cells for different input levels can be utilized to reduce the number of required simulations. Based on characterization results, the fitting models for the SET sensitivity metrics (critical charge, generated SET pulse width and propagated SET pulse width) have been developed. The proposed models are based on the principle of superposition, and they express explicitly the dependence of the SET sensitivity of individual combinational cells on design, operating and irradiation parameters. In contrast to the state-of-the-art characterization methodologies which employ extensive look-up tables (LUTs) for storing the simulation results, this work proposes the use of LUTs for storing the fitting coefficients of the SET sensitivity models derived from the characterization results. In that way the amount of characterization data in the SET sensitivity database is reduced significantly.
The initial step in enhancing the robustness of combinational logic is the application of gate-level mitigation techniques. As a result, significant improvement of the overall SER can be achieved with minimum area, delay and power overheads. For the SET mitigation in standard cells, it is essential to employ the techniques that do not require modifying the cell structure. This work introduces the use of decoupling cells for improving the robustness of standard combinational cells. By insertion of two decoupling cells at the output of a target cell, the critical charge of the cell’s output node is increased and the attenuation of short SETs is enhanced. In comparison to the most common gate-level techniques (gate upsizing and gate duplication), the proposed approach provides better SET filtering. However, as there is no single gate-level mitigation technique with optimal performance, a combination of multiple techniques is required. This work introduces a comprehensive characterization of gate-level mitigation techniques aimed to quantify their impact on the SET robustness improvement, as well as introduced area, delay and power overhead per gate. By characterizing the gate-level mitigation techniques together with the standard cells, the required effort in subsequent SER analysis of a target design can be reduced. The characterization database of the hardened standard cells can be utilized as a guideline for selection of the most appropriate mitigation solution for a given design.
As a support for dynamic soft error mitigation techniques, it is important to enable the online detection of energetic particles causing the soft errors. This allows activating the power-greedy fault-tolerant configurations based on N-modular redundancy only at the high radiation levels. To enable such a functionality, it is necessary to monitor both the particle flux and the variation of particle LET, as these two parameters contribute significantly to the system SER. In this work, a particle detection approach based on custom-sized pulse stretching inverters is proposed. Employing the pulse stretching inverters connected in parallel enables to measure the particle flux in terms of the number of detected SETs, while the particle LET variations can be estimated from the distribution of SET pulse widths. This approach requires a purely digital processing logic, in contrast to the standard detectors which require complex mixed-signal processing. Besides the possibility of LET monitoring, additional advantages of the proposed particle detector are low detection latency and power consumption, and immunity to error accumulation.
The results achieved in this thesis can serve as a basis for establishment of an overall soft-error-aware database for a given digital library, and a comprehensive multi-level radiation-hard design flow that can be implemented with the standard IC design tools. The following step will be to evaluate the achieved results with the irradiation experiments.
In the course of patient treatments, psychotherapists aim to meet the challenges of being both a trusted, knowledgeable conversation partner and a diligent documentalist. We are developing the digital whiteboard system Tele-Board MED (TBM), which allows the therapist to take digital notes during the session together with the patient. This study investigates what therapists are experiencing when they document with TBM in patient sessions for the first time and whether this documentation saves them time when writing official clinical documents. As the core of this study, we conducted four anamnesis session dialogues with behavior psychotherapists and volunteers acting in the role of patients. Following a mixed-method approach, the data collection and analysis involved self-reported emotion samples, user experience curves and questionnaires. We found that even in the very first patient session with TBM, therapists come to feel comfortable, develop a positive feeling and can concentrate on the patient. Regarding administrative documentation tasks, we found with the TBM report generation feature the therapists save 60% of the time they normally spend on writing case reports to the health insurance.
Utilizing quad-trees for efficient design space exploration with partial assignment evaluation
(2018)
Recently, it has been shown that constraint-based symbolic solving techniques offer an efficient way for deciding binding and routing options in order to obtain a feasible system level implementation. In combination with various background theories, a feasibility analysis of the resulting system may already be performed on partial solutions. That is, infeasible subsets of mapping and routing options can be pruned early in the decision process, which fastens the solving accordingly. However, allowing a proper design space exploration including multi-objective optimization also requires an efficient structure for storing and managing non-dominated solutions. In this work, we propose and study the usage of the Quad-Tree data structure in the context of partial assignment evaluation during system synthesis. Out experiments show that unnecessary dominance checks can be avoided, which indicates a preference of Quad-Trees over a commonly used list-based implementation for large combinatorial optimization problems.
The classification of vulnerabilities is a fundamental step to derive formal attributes that allow a deeper analysis. Therefore, it is required that this classification has to be performed timely and accurate. Since the current situation demands a manual interaction in the classification process, the timely processing becomes a serious issue. Thus, we propose an automated alternative to the manual classification, because the amount of identified vulnerabilities per day cannot be processed manually anymore. We implemented two different approaches that are able to automatically classify vulnerabilities based on the vulnerability description. We evaluated our approaches, which use Neural Networks and the Naive Bayes methods respectively, on the base of publicly known vulnerabilities.
Business process simulation is an important means for quantitative analysis of a business process and to compare different process alternatives. With the Business Process Model and Notation (BPMN) being the state-of-the-art language for the graphical representation of business processes, many existing process simulators support already the simulation of BPMN diagrams. However, they do not provide well-defined interfaces to integrate new concepts in the simulation environment. In this work, we present the design and architecture of a proof-of-concept implementation of an open and extensible BPMN process simulator. It also supports the simulation of multiple BPMN processes at a time and relies on the building blocks of the well-founded discrete event simulation. The extensibility is assured by a plug-in concept. Its feasibility is demonstrated by extensions supporting new BPMN concepts, such as the simulation of business rule activities referencing decision models and batch activities.
In university teaching today, it is common practice to record regular lectures and special events such as conferences and speeches. With these recordings, a large fundus of video teaching material can be created quickly and easily. Typically, lectures have a length of about one and a half hours and usually take place once or twice a week based on the credit hours. Depending on the number of lectures and other events recorded, the number of recordings available is increasing rapidly, which means that an appropriate form of provisioning is essential for the students. This is usually done in the form of lecture video platforms. In this work, we have investigated how lecture video platforms and the contained knowledge can be improved and accessed more easily by an increasing number of students. We came up with a multistep process we have applied to our own lecture video web portal that can be applied to other solutions as well.
Embedded smart home — remote lab MOOC with optional real hardware experience for over 4000 students
(2018)
MOOCs (Massive Open Online Courses) become more and more popular for learners of all ages to study further or to learn new subjects of interest. The purpose of this paper is to introduce a different MOOC course style. Typically, video content is shown teaching the student new information. After watching a video, self-test questions can be answered. Finally, the student answers weekly exams and final exams like the self test questions. Out of the points that have been scored for weekly and final exams a certificate can be issued. Our approach extends the possibility to receive points for the final score with practical programming exercises on real hardware. It allows the student to do embedded programming by communicating over GPIO pins to control LEDs and measure sensor values. Additionally, they can visualize values on an embedded display using web technologies, which are an essential part of embedded and smart home devices to communicate with common APIs. Students have the opportunity to solve all tasks within the online remote lab and at home on the same kind of hardware. The evaluation of this MOOCs indicates the interesting design for students to learn an engineering technique with new technology approaches in an appropriate, modern, supporting and motivating way of teaching.
When students watch learning videos online, they usually need to watch several hours of video content. In the end, not every minute of a video is relevant for the exam. Additionally, students need to add notes to clarify issues of a lecture. There are several possibilities to enhance the metadata of a video, e.g. a typical way to add user-specific information to an online video is a comment functionality, which allows users to share their thoughts and questions with the public. In contrast to common video material which can be found online, lecture videos are used for exam preparation. Due to this difference, the idea comes up to annotate lecture videos with markers and personal notes for a better understanding of the taught content. Especially, students learning for an exam use their notes to refresh their memories. To ease this learning method with lecture videos, we introduce the annotation feature in our video lecture archive. This functionality supports the students with keeping track of their thoughts by providing an intuitive interface to easily add, modify or remove their ideas. This annotation function is integrated in the video player. Hence, scrolling to a separate annotation area on the website is not necessary. Furthermore, the annotated notes can be exported together with the slide content to a PDF file, which can then be printed easily. Lecture video annotations support and motivate students to learn and watch videos from an E-Learning video archive.