• search hit 2 of 28
Back to Result List

The economically optimal warming limit of the planet

  • Both climate-change damages and climate-change mitigation will incur economic costs. While the risk of severe damages increases with the level of global warming (Dell et al., 2014; IPCC, 2014b, 2018; Lenton et al., 2008), mitigating costs increase steeply with more stringent warming limits (IPCC, 2014a; Luderer et al., 2013; Rogelj et al., 2015). Here, we show that the global warming limit that minimizes this century's total economic costs of climate change lies between 1.9 and 2 ∘C, if temperature changes continue to impact national economic growth rates as observed in the past and if instantaneous growth effects are neither compensated nor amplified by additional growth effects in the following years. The result is robust across a wide range of normative assumptions on the valuation of future welfare and inequality aversion. We combine estimates of climate-change impacts on economic growth for 186 countries (applying an empirical damage function from Burke et al., 2015) with mitigation costs derived from a state-of-the-artBoth climate-change damages and climate-change mitigation will incur economic costs. While the risk of severe damages increases with the level of global warming (Dell et al., 2014; IPCC, 2014b, 2018; Lenton et al., 2008), mitigating costs increase steeply with more stringent warming limits (IPCC, 2014a; Luderer et al., 2013; Rogelj et al., 2015). Here, we show that the global warming limit that minimizes this century's total economic costs of climate change lies between 1.9 and 2 ∘C, if temperature changes continue to impact national economic growth rates as observed in the past and if instantaneous growth effects are neither compensated nor amplified by additional growth effects in the following years. The result is robust across a wide range of normative assumptions on the valuation of future welfare and inequality aversion. We combine estimates of climate-change impacts on economic growth for 186 countries (applying an empirical damage function from Burke et al., 2015) with mitigation costs derived from a state-of-the-art energy–economy–climate model with a wide range of highly resolved mitigation options (Kriegler et al., 2017; Luderer et al., 2013, 2015). Our purely economic assessment, even though it omits non-market damages, provides support for the international Paris Agreement on climate change. The political goal of limiting global warming to “well below 2 degrees” is thus also an economically optimal goal given above assumptions on adaptation and damage persistence.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Falko UeckerdtGND, Katja FrielerORCiDGND, Stefan Lange, Leonie WenzORCiDGND, Gunnar LudererORCiDGND, Anders LevermannORCiDGND
DOI:https://doi.org/10.5194/esd-10-741-2019
ISSN:2190-4979
ISSN:2190-4987
Title of parent work (English):Earth system dynamics
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Release date:2020/10/05
Volume:10
Issue:4
Number of pages:23
First page:741
Last Page:763
Funding institution:Hanley Sustainability Institute of the University of Dayton; Leibniz Competition [SAW-2013-PIK-5]; European UnionEuropean Union (EU) [641811]; German Federal Ministry of Education and ResearchFederal Ministry of Education & Research (BMBF) [03EK3046A]; Volkswagen foundationVolkswagen; UC Berkeley
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Publishing method:Open Access
Open Access / Gold Open-Access
DOAJ gelistet
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.