Institut für Physik und Astronomie
Refine
Year of publication
Document Type
- Article (3784)
- Doctoral Thesis (751)
- Postprint (120)
- Monograph/Edited Volume (118)
- Other (81)
- Preprint (44)
- Review (34)
- Habilitation Thesis (23)
- Conference Proceeding (15)
- Master's Thesis (11)
Keywords
- diffusion (51)
- stars: massive (50)
- gamma rays: general (46)
- stars: early-type (43)
- anomalous diffusion (40)
- stars: winds, outflows (40)
- cosmic rays (39)
- Magellanic Clouds (37)
- radiation mechanisms: non-thermal (37)
- ISM: supernova remnants (34)
Institute
- Institut für Physik und Astronomie (4982)
- Extern (52)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (38)
- Department Psychologie (9)
- Institut für Chemie (9)
- Institut für Geowissenschaften (8)
- Mathematisch-Naturwissenschaftliche Fakultät (7)
- Potsdam Institute for Climate Impact Research (PIK) e. V. (6)
- Department Linguistik (2)
- Institut für Biochemie und Biologie (2)
Context:
Gyrochronology allows the derivation of ages for cool main sequence stars based on their observed rotation periods and masses, or a suitable proxy thereof. It is increasingly well-explored for FGK stars, but requires further measurements for older ages and K - M-type stars.
Aims:
We study the 2.7 Gyr-old open cluster Ruprecht 147 to compare it with the previously-studied, but far more distant, NGC 6819 cluster, and especially to measure cooler stars than was previously possible there.
Methods:
We constructed an inclusive list of 102 cluster members from prior work, including Gaia DR2, and for which light curves were also obtained during Campaign 7 of the Kepler/K2 space mission. We placed them in the cluster color-magnitude diagram and checked the related information against appropriate isochrones. The light curves were then corrected for data systematics using Principal Component Analysis on all observed K2 C07 stars and subsequently subjected to periodicity analysis.
Results:
Periodic signals are found for 32 stars, 21 of which are considered to be both highly reliable and to represent single, or effectively single, Ru 147 stars. These stars cover the spectral types from late-F to mid-M stars, and they have periods ranging from 6 d - 33 d, allowing for a comparison of Ruprecht 147 to both other open clusters and to models of rotational spindown. The derived rotation periods connect reasonably to, overlap with, and extend to lower masses the known rotation period distribution of the 2.5 Gyr-old cluster NGC 6819.
Conclusions:
The data confirm that cool stars lie on a single surface in rotation period-mass-age space, and they simultaneously challenge its commonly assumed shape. The shape at the low mass region of the color-period diagram at the age of Ru 147 favors a recently-proposed model which requires a third mass-dependent timescale in addition to the two timescales required by a former model, suggesting that a third physical process is required to model rotating stars effectively.
High diffusion-sensitizing magnetic field gradients have been more and more often applied nowadays to achieve a better characterization of the microstructure. As the resulting spin-echo signal significantly deviates from the conventional Gaussian form, various models have been employed to interpret these deviations and to relate them with the microstructural properties of a sample. In this paper, we argue that the non-Gaussian behavior of the signal is a generic universal feature of the Bloch-Torrey equation. We provide a simple yet rigorous description of the localization regime emerging at high extended gradients and identify its origin as a symmetry breaking at the reflecting boundary. We compare the consequent non-Gaussian signal decay to other diffusion NMR regimes such as slow-diffusion, motional-narrowing and diffusion-diffraction regimes. We emphasize limitations of conventional perturbative techniques and advocate for non-perturbative approaches which may pave a way to new imaging modalities in this field.
The Cattaneo or telegrapher's equation describes the crossover from initial ballistic to normal diffusion. Here we study and survey time-fractional generalisations of this equation that are shown to produce the crossover of the mean squared displacement from superdiffusion to subdiffusion. Conditional solutions are derived in terms of Fox H-functions and the dth-order moments as well as the diffusive flux of the different models are derived. Moreover, the concept of the distribution-like is proposed as an alternative to the probability density function.
A novel design of an electrochemical anodization cell dedicated to the synthesis of mesoporous, single-crystalline silicon is presented. First and foremost, the design principle follows user safety since electrochemical etching of silicon requires highly hazardous electrolytes based on hydrofluoric (HF) acid. The novel cell design allows for safe electrolyte handling prior, during, and post-etching. A peristaltic pump with HF-resistant fluoroelastomer tubing transfers electrolytes between dedicated reservoirs and the anodization cell. Due to the flexibility of the cell operation, different processing conditions can be realized providing a large parameter range for the attainable sample thickness, its porosity, and the mean pore size. Rapid etching on the order of several minutes to synthesize micrometer-thick porous silicon epilayers on bulk silicon is possible as well as long-time etching with continuous, controlled electrolyte flow for several days to prepare up to 1000 mu m thick self-supporting porous silicon membranes. A highly adaptable, LabVIEW((TM))-based control software allows for user-defined etching profiles.
Spherulite-related space-charge electret properties of polypropylene (PP) have been widely discussed in the past decades. In the present paper, a less-common crystalline structure in PP-transcrystalline PP-is studied regarding its electret behavior in comparison with the typical spherulitic morphology. Polarized light microscopy and differential scanning calorimetry were employed to characterize the crystallite types and crystallinities of transcrystalline and spherulitic PP. Their electret functionality is investigated by means of thermally stimulated discharge experiments, where the cross-over phenomenon is observed on transcrystalline PP films, whereas surface-potential saturation and undercharging on the surface occur on the spherulitic samples. Besides, an asymmetrical behavior of positive and negative surface-charge stabilities is found on PP with spherulites, the negatively charged spherulitic surfaces show a better charge stability. It is shown that PP electrets are very sensitive to changes in the microscopic crystalline structures and their interfaces as well as in the molecular conformations controlled through adjustments of the respective processing steps. In addition, surface and bulk nanocomposites of PP or low-density polyethylene with inorganic particles are included in the comparison. In view of recent developments in the areas of PP-based electret-fiber filters and cellular-foam ferroelectrets, the observed changes in the charge-storage properties may have particular relevance, as the required film, fiber, or foam processing might significantly modify crystalline morphologies and nano-scale interfaces in PP electrets. Limitations in the charge-storage capabilities of interface structures may also be of interest in the context of high-voltage electrical-insulation materials where reduced space-charge accumulation and slightly increased charge transport can be advantageous.
Stellar atmosphere modeling and chemical abundance determinations require the knowledge of spectral line shapes. Spectral lines of chromium in various ionization stages are common in stellar spectra but detailed data on Stark broadening for them is scarce. Recently we reported on the first calculations of Stark widths for several 4s-4p transitions of double-ionized chromium, employing the Modified Semi-Empirical approach (MSE). In this work we present applications of the data to spectrum synthesis of Cr III lines in the ultraviolet region of hot stars. The Atlas9 model atmosphere code and the line-formation code Surface were used with the assumption of local thermodynamic equilibrium. The improvements of adopting the MSE broadening tables instead of approximate Stark broadening coefficients are investigated for a total of 56 Cr III lines visible in HST/STIS spectra of the B3 subgiant star Iota Herculis and the subdwarf B-star Feige 66.
In recent decades, astronomy has seen a boom in large-scale stellar surveys of the Galaxy. The detailed information obtained about millions of individual stars in the Milky Way is bringing us a step closer to answering one of the most outstanding questions in astrophysics: how do galaxies form and evolve? The Milky Way is the only galaxy where we can dissect many stars into their high-dimensional chemical composition and complete phase space, which analogously as fossil records can unveil the past history of the genesis of the Galaxy. The processes that lead to large structure formation, such as the Milky Way, are critical for constraining cosmological models; we call this line of study Galactic archaeology or near-field cosmology.
At the core of this work, we present a collection of efforts to chemically and dynamically characterise the disks and bulge of our Galaxy. The results we present in this thesis have only been possible thanks to the advent of the Gaia astrometric satellite, which has revolutionised the field of Galactic archaeology by precisely measuring the positions, parallax distances and motions of more than a billion stars. Another, though not less important, breakthrough is the APOGEE survey, which has observed spectra in the near-infrared peering into the dusty regions of the Galaxy, allowing us to determine detailed chemical abundance patterns in hundreds of thousands of stars. To accurately depict the Milky Way structure, we use and develop the Bayesian isochrone fitting tool/code called StarHorse; this software can predict stellar distances, extinctions and ages by combining astrometry, photometry and spectroscopy based on stellar evolutionary models. The StarHorse code is pivotal to calculating distances where Gaia parallaxes alone cannot allow accurate estimates.
We show that by combining Gaia, APOGEE, photometric surveys and using StarHorse, we can produce a chemical cartography of the Milky way disks from their outermost to innermost parts. Such a map is unprecedented in the inner Galaxy. It reveals a continuity of the bimodal chemical pattern previously detected in the solar neighbourhood, indicating two populations with distinct formation histories. Furthermore, the data reveals a chemical gradient within the thin disk where the content of 𝛼-process elements and metals is higher towards the centre. Focusing on a sample in the inner MW we confirm the extension of the chemical duality to the innermost regions of the Galaxy. We find stars with bar shape orbits to show both high- and low-𝛼 abundances, suggesting the bar formed by secular evolution trapping stars that already existed. By analysing the chemical orbital space of the inner Galactic regions, we disentangle the multiple populations that inhabit this complex region. We reveal the presence of the thin disk, thick disk, bar, and a counter-rotating population, which resembles the outcome of a perturbed proto-Galactic disk. Our study also finds that the inner Galaxy holds a high quantity of super metal-rich stars up to three times solar suggesting it is a possible repository of old super-metal-rich stars found in the solar neighbourhood.
We also enter into the complicated task of deriving individual stellar ages. With StarHorse, we calculate the ages of main-sequence turn-off and sub-giant stars for several public spectroscopic surveys. We validate our results by investigating linear relations between chemical abundances and time since the 𝛼 and neutron capture elements are sensitive to age as a reflection of the different enrichment timescales of these elements. For further study of the disks in the solar neighbourhood, we use an unsupervised machine learning algorithm to delineate a multidimensional separation of chrono-chemical stellar groups revealing the chemical thick disk, the thin disk, and young 𝛼-rich stars. The thick disk is shown to have a small age dispersion indicating its fast formation contrary to the thin disk that spans a wide range of ages.
With groundbreaking data, this thesis encloses a detailed chemo-dynamical view of the disk and bulge of our Galaxy. Our findings on the Milky Way can be linked to the evolution of high redshift disk galaxies, helping to solve the conundrum of galaxy formation.
The Antarctic ice sheet is the largest freshwater reservoir worldwide. If it were to melt completely, global sea levels would rise by about 58 m. Calculation of projections of the Antarctic contribution to sea level rise under global warming conditions is an ongoing effort which
yields large ranges in predictions. Among the reasons for this are uncertainties related to the physics of ice sheet modeling. These
uncertainties include two processes that could lead to runaway ice retreat: the Marine Ice Sheet Instability (MISI), which causes rapid grounding line retreat on retrograde bedrock, and the Marine Ice Cliff Instability (MICI), in which tall ice cliffs become unstable and calve off, exposing even taller ice cliffs.
In my thesis, I investigated both marine instabilities (MISI and MICI) using the Parallel Ice Sheet Model (PISM), with a focus on MICI.
Motivated by the observation of non-exponential run-time distributions of bacterial swimmers, we propose a minimal phenomenological model for taxis of active particles whose motion is controlled by an internal clock. The ticking of the clock depends on an external concentration field, e.g., a chemical substance. We demonstrate that these particles can detect concentration gradients and respond to them by moving up- or down-gradient depending on the clock design, albeit measurements of these fields are purely local in space and instantaneous in time. Altogether, our results open a new route in the study of directional navigation: we show that the use of a clock to control motility actions represents a generic and versatile toolbox to engineer behavioral responses to external cues, such as light, chemical, or temperature gradients.
In order to tailor solution-phase chemical reactions involving transition metal complexes, it is critical to understand how their valence electronic charge distributions are affected by the solution environment. Here, solute-solvent interactions of a solvatochromic mixed-ligand iron complex were investigated using X-ray absorption spectroscopy at the transition metal L-2,L-3-edge. Due to the selectivity of the corresponding core excitations to the iron 3d orbitals, the method grants direct access to the valence electronic structure around the iron center and its response to interactions with the solvent environment. A linear increase of the total L-2,L-3-edge absorption cross section as a function of the solvent Lewis acidity is revealed. The effect is caused by relative changes in different metal-ligand-bonding channels, which preserve local charge densities while increasing the density of unoccupied states around the iron center. These conclusions are corroborated by a combination of molecular dynamics and spectrum simulations based on time-dependent density functional theory. The simulations reproduce the spectral trends observed in the X-ray but also optical absorption experiments. Our results underscore the importance of solute-solvent interactions when aiming for an accurate description of the valence electronic structure of solvated transition metal complexes and demonstrate how L-2,L-3-edge absorption spectroscopy can aid in understanding the impact of the solution environment on intramolecular covalency and the electronic charge distribution.