## 530 Physik

### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (314)
- Article (282)
- Postprint (81)
- Preprint (50)
- Habilitation Thesis (21)
- Other (15)
- Master's Thesis (9)
- Monograph/Edited Volume (3)
- Review (2)
- Conference Proceeding (1)

#### Keywords

- diffusion (30)
- anomalous diffusion (22)
- Synchronisation (15)
- synchronization (13)
- Datenanalyse (10)
- data analysis (10)
- stochastic processes (10)
- Nichtlineare Dynamik (9)
- Chaos (8)
- Biophysik (7)

#### Institute

- Institut für Physik und Astronomie (711)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (52)
- Mathematisch-Naturwissenschaftliche Fakultät (24)
- Extern (20)
- Institut für Geowissenschaften (12)
- Institut für Chemie (9)
- Institut für Biochemie und Biologie (5)
- Institut für Mathematik (5)
- Potsdam Institute for Climate Impact Research (PIK) e. V. (4)
- Department Psychologie (2)

What comes NeXT?
(2019)

Here, we report on a new record in the acquisition time for fast neutron tomography. With an optimized imaging setup, it was possible to acquire single radiographic projection images with 10 ms and full tomographies with 155 projections images and a physical spatial resolution of 200 mu m within 1.5 s. This is about 6.7 times faster than the current record. We used the technique to investigate the water infiltration in the soil with a living lupine root system. The fast imaging setup will be part of the future NeXT instrument at ILL in Grenoble with a great field of possible future applications. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Gamma-ray bursts (GRBs) are brief flashes of gamma-rays and are considered to be the most energetic explosive phenomena in the Universe(1). The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed(2). GRBs typically emit most of their energy via.-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments(3). However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive(4). Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and gamma-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.

Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE), which provides quantized edge states for lossless charge-transport applications(1-8). The edge states are hosted by a magnetic energy gap at the Dirac point(2), but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, T-C (ref. (8)). Here we use low-temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below T-C. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is five times larger than theoretically predicted(9). Using multiscale analysis we show that this enhancement is due to a remarkable structure modification induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap(10). Mn-doped Bi2Se3 (ref. (11)) and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin-orbit interaction by comparison with Mn-doped Bi2Te3. Our findings provide insights that will be crucial in pushing lossless transport in topological insulators towards room-temperature applications.

Open-circuit voltages of lead-halide perovskite solar cells are improving rapidly and are approaching the thermodynamic limit. Since many different perovskite compositions with different bandgap energies are actively being investigated, it is not straightforward to compare the open-circuit voltages between these devices as long as a consistent method of referencing is missing. For the purpose of comparing open-circuit voltages and identifying outstanding values, it is imperative to use a unique, generally accepted way of calculating the thermodynamic limit, which is currently not the case. Here a meta-analysis of methods to determine the bandgap and a radiative limit for open-circuit voltage is presented. The differences between the methods are analyzed and an easily applicable approach based on the solar cell quantum efficiency as a general reference is proposed.

This is a correction notice for ‘Post-adiabatic supernova remnants in an interstellar magnetic field: oblique shocks and non-uniform environment’ (DOI: https://doi.org/10.1093/mnras/sty1750), which was published in MNRAS 479, 4253–4270 (2018). The publisher regrets to inform that the colour was missing from the colour scales in Figs 8(a)–(d) and Figs 9(a) and (b). This has now been corrected online. The publisher apologizes for this error.

Proteins and peptides play a predominant role in biochemical reactions of living cells. In these complex environments, not only the constitution of the molecules but also their three-dimensional configuration defines their functionality. This so-called secondary structure of proteins is crucial for understanding their function in living matter. Misfolding, for example, is suspected as the cause of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Ultimately, it is necessary to study a single protein and its folding dynamics. Here, we report a first step in this direction, namely ultrasensitive detection and discrimination of in vitro polypeptide folding and unfolding processes using resonant plasmonic nanoantennas for surface-enhanced vibrational spectroscopy. We utilize poly-l-lysine as a model system which has been functionalized on the gold surface. By in vitro infrared spectroscopy of a single molecular monolayer at the amide I vibrations we directly monitor the reversible conformational changes between α-helix and β-sheet states induced by controlled external chemical stimuli. Our scheme in combination with advanced positioning of the peptides and proteins and more brilliant light sources is highly promising for ultrasensitive in vitro studies down to the single protein level.

While the volumetric energy density is commonly used to qualify a process parameter set, and to quantify its influence on the microstructure and performance of additively manufactured (AM) materials and components, it has been already shown that this description is by no means exhaustive. In this work, new aspects of the optimization of the selective laser melting process are investigated for AM Ti-6Al-4V. We focus on the amount of near-surface residual stress (RS), often blamed for the failure of components, and on the porosity characteristics (amount and spatial distribution). First, using synchrotron x-ray diffraction we show that higher RS in the subsurface region is generated if a lower energy density is used. Second, we show that laser de-focusing and sample positioning inside the build chamber also play an eminent role, and we quantify this influence. In parallel, using X-ray Computed Tomography, we observe that porosity is mainly concentrated in the contour region, except in the case where the laser speed is small. The low values of porosity (less than 1%) do not influence RS.

We develop a numerical approach to reconstruct the phase dynamics of driven or coupled self-sustained oscillators. Employing a simple algorithm for computation of the phase of a perturbed system, we construct numerically the equation for the evolution of the phase. Our simulations demonstrate that the description of the dynamics solely by phase variables can be valid for rather strong coupling strengths and large deviations from the limit cycle. Coupling functions depend crucially on the coupling and are generally non-decomposable in phase response and forcing terms. We also discuss the limitations of the approach. Published under license by AIP Publishing.

The paper focuses on the reformulation of classic Maxwell's (1873) homogenization method for calculation of the residual stresses in matrix composites. For this goal, we equate the far fields produced by a set of inhomogeneities subjected to known eigenstrains and by a fictitious domain with unknown eigenstrain. The effect of interaction between the inhomogeneities is reduced to the calculation of the additional field acting on an inhomogeneity due to the eigenstrains in its neighbors. An explicit formula for residual stresses is derived for the general case of a multiphase composite. The method is illustrated by several examples. The results are compared with available experimental data as well as with predictions provided by the non-interaction approximation (Eshelby solution). It is shown that accounting for interaction can explain many experimentally observed phenomena and is required for adequate quantitative analytical modeling of the residual stresses in matrix composites.

We consider the dynamics of the Kuramoto ensemble oscillators not included in a common synchronized cluster, where the mean field is subject to fluctuations. The fluctuations can be either related to the finite size of the ensemble or superimposed on the mean field in the form of common noise due to the constructive features of the system. It is shown that the states of such oscillators with close natural frequencies appear correlated with each other, since the mean-field fluctuations act as common noise. We quantify the effect with the synchronization index of two oscillators, which is calculated numerically and analytically as a function of the frequency difference and noise intensity. The results are rigorous for large ensembles with additional noise superimposed on the mean field and are qualitatively true for the systems where the mean-field fluctuations are due to the finite size of the ensemble. In the latter case, the effect is found to be independent of the number of oscillators in the ensemble.