• search hit 8 of 27
Back to Result List

Phylogeography of a widely distributed plant species reveals cryptic genetic lineages with parallel phenotypic responses to warming and drought conditions

  • To predict how widely distributed species will perform under future climate change, it is crucial to understand and reveal their underlying phylogenetics. However, detailed information about plant adaptation and its genetic basis and history remains scarce and especially widely distributed species receive little attention despite their putatively high adaptability. To examine the adaptation potential of a widely distributed species, we sampled the model plant Silene vulgaris across Europe. In a greenhouse experiment, we exposed the offspring of these populations to a climate change scenario for central Europe and revealed the population structure through whole-genome sequencing. Plants were grown under two temperatures (18°C and 21°C) and three precipitation regimes (65, 75, and 90 mm) to measure their response in biomass and fecundity-related traits. To reveal the population genetic structure, ddRAD sequencing was employed for a whole-genome approach. We found three major genetic clusters in S. vulgaris from Europe: one clusterTo predict how widely distributed species will perform under future climate change, it is crucial to understand and reveal their underlying phylogenetics. However, detailed information about plant adaptation and its genetic basis and history remains scarce and especially widely distributed species receive little attention despite their putatively high adaptability. To examine the adaptation potential of a widely distributed species, we sampled the model plant Silene vulgaris across Europe. In a greenhouse experiment, we exposed the offspring of these populations to a climate change scenario for central Europe and revealed the population structure through whole-genome sequencing. Plants were grown under two temperatures (18°C and 21°C) and three precipitation regimes (65, 75, and 90 mm) to measure their response in biomass and fecundity-related traits. To reveal the population genetic structure, ddRAD sequencing was employed for a whole-genome approach. We found three major genetic clusters in S. vulgaris from Europe: one cluster comprising Southern European populations, one cluster of Western European populations, and another cluster containing central European populations. Population genetic diversity decreased with increasing latitude, and a Mantel test revealed significant correlations between FST and geographic distances as well as between genetic and environmental distances. Our trait analysis showed that the genetic clusters significantly differed in biomass-related traits and in the days to flowering. However, half of the traits showed parallel response patterns to the experimental climate change scenario. Due to the differentiated but parallel response patterns, we assume that phenotypic plasticity plays an important role for the adaptation of the widely distributed species S. vulgaris and its intraspecific genetic lineages.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sandra KahlORCiDGND, Christian KappelORCiDGND, Jasmin Radha JoshiORCiDGND, Michael LenhardORCiDGND
DOI:https://doi.org/10.1002/ece3.8103
ISSN:2045-7758
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/34707833
Title of parent work (English):Ecology and Evolution
Publisher:John Wiley & Sons, Inc.
Place of publishing:Hoboken
Publication type:Article
Language:English
Date of first publication:2021/09/09
Publication year:2021
Release date:2021/12/07
Tag:Silene vulgaris; climate adaptation; ddRAD
Volume:11
Issue:20
Number of pages:17
First page:13986
Last Page:14002
Funding institution:Universität Potsdam
Funding institution:University of Potsdam (Core Area: Functional Ecology and Evolution)
Funding number:PA 2021_093
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer review:Referiert
Grantor:Publikationsfonds der Universität Potsdam
Publishing method:Open Access / Gold Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Zweitveröffentlichung in der Schriftenreihe Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 1218
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.