The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 1061
Back to Result List

Lidar-Derived Aerosol Properties from Ny-Ålesund, Svalbard during the MOSAiC Spring 2020

  • In this work, we present Raman lidar data (from a Nd:YAG operating at 355 nm, 532 nm and 1064 nm) from the international research village Ny-Alesund for the time period of January to April 2020 during the Arctic haze season of the MOSAiC winter. We present values of the aerosol backscatter, the lidar ratio and the backscatter Angstrom exponent, though the latter depends on wavelength. The aerosol polarization was generally below 2%, indicating mostly spherical particles. We observed that events with high backscatter and high lidar ratio did not coincide. In fact, the highest lidar ratios (LR > 75 sr at 532 nm) were already found by January and may have been caused by hygroscopic growth, rather than by advection of more continental aerosol. Further, we performed an inversion of the lidar data to retrieve a refractive index and a size distribution of the aerosol. Our results suggest that in the free troposphere (above approximate to 2500 m) the aerosol size distribution is quite constant in time, with dominance of small particles with aIn this work, we present Raman lidar data (from a Nd:YAG operating at 355 nm, 532 nm and 1064 nm) from the international research village Ny-Alesund for the time period of January to April 2020 during the Arctic haze season of the MOSAiC winter. We present values of the aerosol backscatter, the lidar ratio and the backscatter Angstrom exponent, though the latter depends on wavelength. The aerosol polarization was generally below 2%, indicating mostly spherical particles. We observed that events with high backscatter and high lidar ratio did not coincide. In fact, the highest lidar ratios (LR > 75 sr at 532 nm) were already found by January and may have been caused by hygroscopic growth, rather than by advection of more continental aerosol. Further, we performed an inversion of the lidar data to retrieve a refractive index and a size distribution of the aerosol. Our results suggest that in the free troposphere (above approximate to 2500 m) the aerosol size distribution is quite constant in time, with dominance of small particles with a modal radius well below 100 nm. On the contrary, below approximate to 2000 m in altitude, we frequently found gradients in aerosol backscatter and even size distribution, sometimes in accordance with gradients of wind speed, humidity or elevated temperature inversions, as if the aerosol was strongly modified by vertical displacement in what we call the "mechanical boundary layer". Finally, we present an indication that additional meteorological soundings during MOSAiC campaign did not necessarily improve the fidelity of air backtrajectories.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jonas DubeORCiD, Christine BöckmannORCiDGND, Christoph RitterORCiD
DOI:https://doi.org/10.3390/rs14112578
ISSN:2072-4292
Title of parent work (English):Remote sensing / Molecular Diversity Preservation International (MDPI)
Publisher:MDPI
Place of publishing:Basel
Publication type:Article
Language:English
Date of first publication:2022/05/27
Publication year:2022
Release date:2024/02/22
Tag:Arctic haze; MOSAiC; Ny-Alesund; Svalbard; aerosol; aerosol-boundary layer interactions; backtrajectories;; lidar; microphysical properties
Volume:14
Issue:11
Article number:2578
Number of pages:17
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.