510 Mathematik
Refine
Year of publication
Document Type
- Preprint (373)
- Article (122)
- Doctoral Thesis (67)
- Postprint (40)
- Monograph/Edited Volume (13)
- Other (8)
- Part of a Book (5)
- Conference Proceeding (4)
- Master's Thesis (4)
- Bachelor Thesis (2)
Language
- English (595)
- German (42)
- French (3)
- Multiple languages (1)
Keywords
- random point processes (18)
- statistical mechanics (18)
- stochastic analysis (18)
- index (13)
- boundary value problems (12)
- elliptic operators (9)
- Fredholm property (8)
- cluster expansion (8)
- K-theory (7)
- manifolds with singularities (7)
Institute
- Institut für Mathematik (604)
- Mathematisch-Naturwissenschaftliche Fakultät (14)
- Extern (13)
- Institut für Biochemie und Biologie (4)
- Institut für Informatik und Computational Science (4)
- Institut für Philosophie (3)
- Department Grundschulpädagogik (2)
- Historisches Institut (2)
- Institut für Physik und Astronomie (2)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (2)
Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of compound Poisson processes whose jumps belong to a finite set . We propose a characterization of the reciprocal class as the unique set of probability measures on which a family of time and space transformations induces the same density, expressed in terms of the reciprocal invariants. The geometry of plays a crucial role in the design of the transformations, and we use tools from discrete geometry to obtain an optimal characterization. We deduce explicit conditions for two Markov jump processes to belong to the same class. Finally, we provide a natural interpretation of the invariants as short-time asymptotics for the probability that the reference process makes a cycle around its current state.
The index theorem for elliptic operators on a closed Riemannian manifold by Atiyah and Singer has many applications in analysis, geometry and topology, but it is not suitable for a generalization to a Lorentzian setting.
In the case where a boundary is present Atiyah, Patodi and Singer provide an index theorem for compact Riemannian manifolds by introducing non-local boundary conditions obtained via the spectral decomposition of an induced boundary operator, so called APS boundary conditions. Bär and Strohmaier prove a Lorentzian version of this index theorem for the Dirac operator on a manifold with boundary by utilizing results from APS and the characterization of the spectral flow by Phillips. In their case the Lorentzian manifold is assumed to be globally hyperbolic and spatially compact, and the induced boundary operator is given by the Riemannian Dirac operator on a spacelike Cauchy hypersurface. Their results show that imposing APS boundary conditions for these boundary operator will yield a Fredholm operator with a smooth kernel and its index can be calculated by a formula similar to the Riemannian case.
Back in the Riemannian setting, Bär and Ballmann provide an analysis of the most general kind of boundary conditions that can be imposed on a first order elliptic differential operator that will still yield regularity for solutions as well as Fredholm property for the resulting operator. These boundary conditions can be thought of as deformations to the graph of a suitable operator mapping APS boundary conditions to their orthogonal complement.
This thesis aims at applying the boundary conditions found by Bär and Ballmann to a Lorentzian setting to understand more general types of boundary conditions for the Dirac operator, conserving Fredholm property as well as providing regularity results and relative index formulas for the resulting operators. As it turns out, there are some differences in applying these graph-type boundary conditions to the Lorentzian Dirac operator when compared to the Riemannian setting. It will be shown that in contrast to the Riemannian case, going from a Fredholm boundary condition to its orthogonal complement works out fine in the Lorentzian setting. On the other hand, in order to deduce Fredholm property and regularity of solutions for graph-type boundary conditions, additional assumptions for the deformation maps need to be made.
The thesis is organized as follows. In chapter 1 basic facts about Lorentzian and Riemannian spin manifolds, their spinor bundles and the Dirac operator are listed. These will serve as a foundation to define the setting and prove the results of later chapters.
Chapter 2 defines the general notion of boundary conditions for the Dirac operator used in this thesis and introduces the APS boundary conditions as well as their graph type deformations. Also the role of the wave evolution operator in finding Fredholm boundary conditions is analyzed and these boundary conditions are connected to notion of Fredholm pairs in a given Hilbert space.
Chapter 3 focuses on the principal symbol calculation of the wave evolution operator and the results are used to proof Fredholm property as well as regularity of solutions for suitable graph-type boundary conditions. Also sufficient conditions are derived for (pseudo-)local boundary conditions imposed on the Dirac operator to yield a Fredholm operator with a smooth solution space.
In the last chapter 4, a few examples of boundary conditions are calculated applying the results of previous chapters. Restricting to special geometries and/or boundary conditions, results can be obtained that are not covered by the more general statements, and it is shown that so-called transmission conditions behave very differently than in the Riemannian setting.
This longitudinal study examined relationships between student-perceived teaching for meaning, support for autonomy, and competence in mathematic classrooms (Time 1), and students’ achievement goal orientations and engagement in mathematics 6 months later (Time 2). We tested whether student-perceived instructional characteristics at Time 1 indirectly related to student engagement at Time 2, via their achievement goal orientations (Time 2), and, whether student gender moderated these relationships. Participants were ninth and tenth graders (55.2% girls) from 46 classrooms in ten secondary schools in Berlin, Germany. Only data from students who participated at both timepoints were included (N = 746 out of total at Time 1 1118; dropout 33.27%). Longitudinal structural equation modeling showed that student-perceived teaching for meaning and support for competence indirectly predicted intrinsic motivation and effort, via students’ mastery goal orientation. These paths were equivalent for girls and boys. The findings are significant for mathematics education, in identifying motivational processes that partly explain the relationships between student-perceived teaching for meaning and competence support and intrinsic motivation and effort in mathematics.
We consider the Cauchy problem for the heat equation in a cylinder C (T) = X x (0, T) over a domain X in R (n) , with data on a strip lying on the lateral surface. The strip is of the form S x (0, T), where S is an open subset of the boundary of X. The problem is ill-posed. Under natural restrictions on the configuration of S, we derive an explicit formula for solutions of this problem.
Broad-spectrum antibiotic combination therapy is frequently applied due to increasing resistance development of infective pathogens. The objective of the present study was to evaluate two common empiric broad-spectrum combination therapies consisting of either linezolid (LZD) or vancomycin (VAN) combined with meropenem (MER) against Staphylococcus aureus (S. aureus) as the most frequent causative pathogen of severe infections. A semimechanistic pharmacokinetic-pharmacodynamic (PK-PD) model mimicking a simplified bacterial life-cycle of S. aureus was developed upon time-kill curve data to describe the effects of LZD, VAN, and MER alone and in dual combinations. The PK-PD model was successfully (i) evaluated with external data from two clinical S. aureus isolates and further drug combinations and (ii) challenged to predict common clinical PK-PD indices and breakpoints. Finally, clinical trial simulations were performed that revealed that the combination of VAN-MER might be favorable over LZD-MER due to an unfavorable antagonistic interaction between LZD and MER.
As a potentially toxic agent on nervous system and bone, the safety of aluminium exposure from adjuvants in vaccines and subcutaneous immune therapy (SCIT) products has to be continuously reevaluated, especially regarding concomitant administrations. For this purpose, knowledge on absorption and disposition of aluminium in plasma and tissues is essential. Pharmacokinetic data after vaccination in humans, however, are not available, and for methodological and ethical reasons difficult to obtain. To overcome these limitations, we discuss the possibility of an in vitro-in silico approach combining a toxicokinetic model for aluminium disposition with biorelevant kinetic absorption parameters from adjuvants. We critically review available kinetic aluminium-26 data for model building and, on the basis of a reparameterized toxicokinetic model (Nolte et al., 2001), we identify main modelling gaps. The potential of in vitro dissolution experiments for the prediction of intramuscular absorption kinetics of aluminium after vaccination is explored. It becomes apparent that there is need for detailed in vitro dissolution and in vivo absorption data to establish an in vitro-in vivo correlation (IVIVC) for aluminium adjuvants. We conclude that a combination of new experimental data and further refinement of the Nolte model has the potential to fill a gap in aluminium risk assessment. (C) 2017 Elsevier Inc. All rights reserved.
Manifolds with corners in the present investigation are non-smooth configurations - specific stratified spaces - with an incomplete metric such as cones, manifolds with edges, or corners of piecewise smooth domains in Euclidean space. We focus here on operators on such "corner manifolds" of singularity order <= 2, acting in weighted corner Sobolev spaces. The corresponding corner degenerate pseudo-differential operators are formulated via Mellin quantizations, and they also make sense on infinite singular cones.
Although the detection of metastases radically changes prognosis of and treatment decisions for a cancer patient, clinically undetectable micrometastases hamper a consistent classification into localized or metastatic disease. This chapter discusses mathematical modeling efforts that could help to estimate the metastatic risk in such a situation. We focus on two approaches: (1) a stochastic framework describing metastatic emission events at random times, formalized via Poisson processes, and (2) a deterministic framework describing the micrometastatic state through a size-structured density function in a partial differential equation model. Three aspects are addressed in this chapter. First, a motivation for the Poisson process framework is presented and modeling hypotheses and mechanisms are introduced. Second, we extend the Poisson model to account for secondary metastatic emission. Third, we highlight an inherent crosslink between the stochastic and deterministic frameworks and discuss its implications. For increased accessibility the chapter is split into an informal presentation of the results using a minimum of mathematical formalism and a rigorous mathematical treatment for more theoretically interested readers.
The ensemble Kalman filter has become a popular data assimilation technique in the geosciences. However, little is known theoretically about its long term stability and accuracy. In this paper, we investigate the behavior of an ensemble Kalman-Bucy filter applied to continuous-time filtering problems. We derive mean field limiting equations as the ensemble size goes to infinity as well as uniform-in-time accuracy and stability results for finite ensemble sizes. The later results require that the process is fully observed and that the measurement noise is small. We also demonstrate that our ensemble Kalman-Bucy filter is consistent with the classic Kalman-Bucy filter for linear systems and Gaussian processes. We finally verify our theoretical findings for the Lorenz-63 system.
We study the Ollivier-Ricci curvature of graphs as a function of the chosen idleness. We show that this idleness function is concave and piecewise linear with at most three linear parts, and at most two linear parts in the case of a regular graph. We then apply our result to show that the idleness function of the Cartesian product of two regular graphs is completely determined by the idleness functions of the factors.