## 510 Mathematik

### Refine

#### Year of publication

#### Document Type

- Preprint (373)
- Article (246)
- Doctoral Thesis (75)
- Postprint (42)
- Monograph/Edited Volume (13)
- Other (10)
- Master's Thesis (6)
- Part of a Book (5)
- Conference Proceeding (5)
- Review (3)

#### Language

- English (732)
- German (46)
- French (3)
- Multiple languages (1)

#### Keywords

- random point processes (18)
- statistical mechanics (18)
- stochastic analysis (18)
- index (14)
- boundary value problems (12)
- Fredholm property (10)
- regularization (10)
- cluster expansion (9)
- elliptic operators (9)
- data assimilation (8)

#### Institute

- Institut für Mathematik (726)
- Extern (14)
- Mathematisch-Naturwissenschaftliche Fakultät (14)
- Institut für Physik und Astronomie (10)
- Hasso-Plattner-Institut für Digital Engineering gGmbH (7)
- Institut für Biochemie und Biologie (6)
- Department Psychologie (4)
- Institut für Informatik und Computational Science (4)
- Department Grundschulpädagogik (3)
- Institut für Philosophie (3)

We introduce and study a family of lattice equations which may be viewed either as a strongly nonlinear discrete extension of the Gardner equation, or a non-convex variant of the Lotka-Volterra chain. Their deceptively simple form supports a very rich family of complex solitary patterns. Some of these patterns are also found in the quasi-continuum rendition, but the more intriguing ones, like interlaced pairs of solitary waves, or waves which may reverse their direction either spontaneously or due a collision, are an intrinsic feature of the discrete realm.

Transition path theory (TPT) for diffusion processes is a framework for analyzing the transitions of multiscale ergodic diffusion processes between disjoint metastable subsets of state space. Most methods for applying TPT involve the construction of a Markov state model on a discretization of state space that approximates the underlying diffusion process. However, the assumption of Markovianity is difficult to verify in practice, and there are to date no known error bounds or convergence results for these methods. We propose a Monte Carlo method for approximating the forward committor, probability current, and streamlines from TPT for diffusion processes. Our method uses only sample trajectory data and partitions of state space based on Voronoi tessellations. It does not require the construction of a Markovian approximating process. We rigorously prove error bounds for the approximate TPT objects and use these bounds to show convergence to their exact counterparts in the limit of arbitrarily fine discretization. We illustrate some features of our method by application to a process that solves the Smoluchowski equation on a triple-well potential.

A theory for diffusivity estimation for spatially extended activator-inhibitor dynamics modeling the evolution of intracellular signaling networks is developed in the mathematical framework of stochastic reaction-diffusion systems. In order to account for model uncertainties, we extend the results for parameter estimation for semilinear stochastic partial differential equations, as developed in Pasemann and Stannat (Electron J Stat 14(1):547-579, 2020), to the problem of joint estimation of diffusivity and parametrized reaction terms. Our theoretical findings are applied to the estimation of effective diffusivity of signaling components contributing to intracellular dynamics of the actin cytoskeleton in the model organism Dictyostelium discoideum.

In this work, we present Raman lidar data (from a Nd:YAG operating at 355 nm, 532 nm and 1064 nm) from the international research village Ny-Alesund for the time period of January to April 2020 during the Arctic haze season of the MOSAiC winter. We present values of the aerosol backscatter, the lidar ratio and the backscatter Angstrom exponent, though the latter depends on wavelength. The aerosol polarization was generally below 2%, indicating mostly spherical particles. We observed that events with high backscatter and high lidar ratio did not coincide. In fact, the highest lidar ratios (LR > 75 sr at 532 nm) were already found by January and may have been caused by hygroscopic growth, rather than by advection of more continental aerosol. Further, we performed an inversion of the lidar data to retrieve a refractive index and a size distribution of the aerosol. Our results suggest that in the free troposphere (above approximate to 2500 m) the aerosol size distribution is quite constant in time, with dominance of small particles with a modal radius well below 100 nm. On the contrary, below approximate to 2000 m in altitude, we frequently found gradients in aerosol backscatter and even size distribution, sometimes in accordance with gradients of wind speed, humidity or elevated temperature inversions, as if the aerosol was strongly modified by vertical displacement in what we call the "mechanical boundary layer". Finally, we present an indication that additional meteorological soundings during MOSAiC campaign did not necessarily improve the fidelity of air backtrajectories.

We prove a homology vanishing theorem for graphs with positive Bakry-' Emery curvature, analogous to a classic result of Bochner on manifolds [3]. Specifically, we prove that if a graph has positive curvature at every vertex, then its first homology group is trivial, where the notion of homology that we use for graphs is the path homology developed by Grigor'yan, Lin, Muranov, and Yau [11]. We moreover prove that the fundamental group is finite for graphs with positive Bakry-' Emery curvature, analogous to a classic result of Myers on manifolds [22]. The proofs draw on several separate areas of graph theory, including graph coverings, gain graphs, and cycle spaces, in addition to the Bakry-Emery curvature, path homology, and graph homotopy. The main results follow as a consequence of several different relationships developed among these different areas. Specifically, we show that a graph with positive curvature cannot have a non-trivial infinite cover preserving 3-cycles and 4-cycles, and give a combinatorial interpretation of the first path homology in terms of the cycle space of a graph. Furthermore, we relate gain graphs to graph homotopy and the fundamental group developed by Grigor'yan, Lin, Muranov, and Yau [12], and obtain an alternative proof of their result that the abelianization of the fundamental group of a graph is isomorphic to the first path homology over the integers.

Variational bayesian inference for nonlinear hawkes process with gaussian process self-effects
(2022)

Traditionally, Hawkes processes are used to model time-continuous point processes with history dependence. Here, we propose an extended model where the self-effects are of both excitatory and inhibitory types and follow a Gaussian Process. Whereas previous work either relies on a less flexible parameterization of the model, or requires a large amount of data, our formulation allows for both a flexible model and learning when data are scarce. We continue the line of work of Bayesian inference for Hawkes processes, and derive an inference algorithm by performing inference on an aggregated sum of Gaussian Processes. Approximate Bayesian inference is achieved via data augmentation, and we describe a mean-field variational inference approach to learn the model parameters. To demonstrate the flexibility of the model we apply our methodology on data from different domains and compare it to previously reported results.

We derive Onsager-Machlup functionals for countable product measures on weighted l(p) subspaces of the sequence space R-N. Each measure in the product is a shifted and scaled copy of a reference probability measure on R that admits a sufficiently regular Lebesgue density. We study the equicoercivity and Gamma-convergence of sequences of Onsager-Machlup functionals associated to convergent sequences of measures within this class. We use these results to establish analogous results for probability measures on separable Banach or Hilbert spaces, including Gaussian, Cauchy, and Besov measures with summability parameter 1 <= p <= 2. Together with part I of this paper, this provides a basis for analysis of the convergence of maximum a posteriori estimators in Bayesian inverse problems and most likely paths in transition path theory.

We introduce the class of "smooth rough paths" and study their main properties. Working in a smooth setting allows us to discard sewing arguments and focus on algebraic and geometric aspects. Specifically, a Maurer-Cartan perspective is the key to a purely algebraic form of Lyons' extension theorem, the renormalization of rough paths following up on [Bruned et al.: A rough path perspective on renormalization, J. Funct. Anal. 277(11), 2019], as well as a related notion of "sum of rough paths". We first develop our ideas in a geometric rough path setting, as this best resonates with recent works on signature varieties, as well as with the renormalization of geometric rough paths. We then explore extensions to the quasi-geometric and the more general Hopf algebraic setting.

The evaluation of process-oriented cognitive theories through time-ordered observations is crucial for the advancement of cognitive science. The findings presented herein integrate insights from research on eye-movement control and sentence comprehension during reading, addressing challenges in modeling time-ordered data, statistical inference, and interindividual variability. Using kernel density estimation and a pseudo-marginal likelihood for fixation durations and locations, a likelihood implementation of the SWIFT model of eye-movement control during reading (Engbert et al., Psychological Review, 112, 2005, pp. 777–813) is proposed. Within the broader framework of data assimilation, Bayesian parameter inference with adaptive Markov Chain Monte Carlo techniques is facilitated for reliable model fitting. Across the different studies, this framework has shown to enable reliable parameter recovery from simulated data and prediction of experimental summary statistics. Despite its complexity, SWIFT can be fitted within a principled Bayesian workflow, capturing interindividual differences and modeling experimental effects on reading across different geometrical alterations of text. Based on these advancements, the integrated dynamical model SEAM is proposed, which combines eye-movement control, a traditionally psychological research area, and post-lexical language processing in the form of cue-based memory retrieval (Lewis & Vasishth, Cognitive Science, 29, 2005, pp. 375–419), typically the purview of psycholinguistics. This proof-of-concept integration marks a significant step forward in natural language comprehension during reading and suggests that the presented methodology can be useful to develop complex cognitive dynamical models that integrate processes at levels of perception, higher cognition, and (oculo-)motor control. These findings collectively advance process-oriented cognitive modeling and highlight the importance of Bayesian inference, individual differences, and interdisciplinary integration for a holistic understanding of reading processes. Implications for theory and methodology, including proposals for model comparison and hierarchical parameter inference, are briefly discussed.