510 Mathematik
Refine
Year of publication
Document Type
- Preprint (373)
- Article (171)
- Doctoral Thesis (69)
- Postprint (40)
- Monograph/Edited Volume (13)
- Other (10)
- Part of a Book (5)
- Master's Thesis (5)
- Conference Proceeding (4)
- Review (3)
Language
- English (649)
- German (43)
- French (3)
- Multiple languages (1)
Keywords
- random point processes (18)
- statistical mechanics (18)
- stochastic analysis (18)
- index (13)
- boundary value problems (12)
- Fredholm property (9)
- elliptic operators (9)
- cluster expansion (8)
- K-theory (7)
- manifolds with singularities (7)
Institute
- Institut für Mathematik (651)
- Mathematisch-Naturwissenschaftliche Fakultät (14)
- Extern (13)
- Institut für Biochemie und Biologie (6)
- Hasso-Plattner-Institut für Digital Engineering gGmbH (5)
- Institut für Informatik und Computational Science (4)
- Department Grundschulpädagogik (3)
- Department Psychologie (3)
- Institut für Philosophie (3)
- Institut für Physik und Astronomie (3)
Process-oriented theories of cognition must be evaluated against time-ordered observations. Here we present a representative example for data assimilation of the SWIFT model, a dynamical model of the control of fixation positions and fixation durations during natural reading of single sentences. First, we develop and test an approximate likelihood function of the model, which is a combination of a spatial, pseudo-marginal likelihood and a temporal likelihood obtained by probability density approximation Second, we implement a Bayesian approach to parameter inference using an adaptive Markov chain Monte Carlo procedure. Our results indicate that model parameters can be estimated reliably for individual subjects. We conclude that approximative Bayesian inference represents a considerable step forward for computational models of eye-movement control, where modeling of individual data on the basis of process-based dynamic models has not been possible so far.
We study those nonlinear partial differential equations which appear as Euler-Lagrange equations of variational problems. On defining weak boundary values of solutions to such equations we initiate the theory of Lagrangian boundary value problems in spaces of appropriate smoothness. We also analyse if the concept of mapping degree of current importance applies to Lagrangian problems.
Inferring causal relations from observational time series data is a key problem across science and engineering whenever experimental interventions are infeasible or unethical. Increasing data availability over the past few decades has spurred the development of a plethora of causal discovery methods, each addressing particular challenges of this difficult task. In this paper, we focus on an important challenge that is at the core of time series causal discovery: regime-dependent causal relations. Often dynamical systems feature transitions depending on some, often persistent, unobserved background regime, and different regimes may exhibit different causal relations. Here, we assume a persistent and discrete regime variable leading to a finite number of regimes within which we may assume stationary causal relations. To detect regime-dependent causal relations, we combine the conditional independence-based PCMCI method [based on a condition-selection step (PC) followed by the momentary conditional independence (MCI) test] with a regime learning optimization approach. PCMCI allows for causal discovery from high-dimensional and highly correlated time series. Our method, Regime-PCMCI, is evaluated on a number of numerical experiments demonstrating that it can distinguish regimes with different causal directions, time lags, and sign of causal links, as well as changes in the variables' autocorrelation. Furthermore, Regime-PCMCI is employed to observations of El Nino Southern Oscillation and Indian rainfall, demonstrating skill also in real-world datasets.
According to Radzikowski’s celebrated results, bisolutions of a wave operator on a globally hyperbolic spacetime are of the Hadamard form iff they are given by a linear combination of distinguished parametrices i2(G˜aF−G˜F+G˜A−G˜R) in the sense of Duistermaat and Hörmander [Acta Math. 128, 183–269 (1972)] and Radzikowski [Commun. Math. Phys. 179, 529 (1996)]. Inspired by the construction of the corresponding advanced and retarded Green operator GA, GR as done by Bär, Ginoux, and Pfäffle {Wave Equations on Lorentzian Manifolds and Quantization [European Mathematical Society (EMS), Zürich, 2007]}, we construct the remaining two Green operators GF, GaF locally in terms of Hadamard series. Afterward, we provide the global construction of i2(G˜aF−G˜F), which relies on new techniques such as a well-posed Cauchy problem for bisolutions and a patching argument using Čech cohomology. This leads to global bisolutions of the Hadamard form, each of which can be chosen to be a Hadamard two-point-function, i.e., the smooth part can be adapted such that, additionally, the symmetry and the positivity condition are exactly satisfied.
We adapt the Faddeev-LeVerrier algorithm for the computation of characteristic polynomials to the computation of the Pfaffian of a skew-symmetric matrix. This yields a very simple, easy to implement and parallelize algorithm of computational cost O(n(beta+1)) where nis the size of the matrix and O(n(beta)) is the cost of multiplying n x n-matrices, beta is an element of [2, 2.37286). We compare its performance to that of other algorithms and show how it can be used to compute the Euler form of a Riemannian manifold using computer algebra.
We study the asymptotics of solutions to the Dirichlet problem in a domain X subset of R3 whose boundary contains a singular point O. In a small neighborhood of this point, the domain has the form {z > root x(2) + y(4)}, i.e., the origin is a nonsymmetric conical point at the boundary. So far, the behavior of solutions to elliptic boundary-value problems has not been studied sufficiently in the case of nonsymmetric singular points. This problem was posed by V.A. Kondrat'ev in 2000. We establish a complete asymptotic expansion of solutions near the singular point.
Matching dependencies (MDs) are data profiling results that are often used for data integration, data cleaning, and entity matching. They are a generalization of functional dependencies (FDs) matching similar rather than same elements. As their discovery is very difficult, existing profiling algorithms find either only small subsets of all MDs or their scope is limited to only small datasets.
We focus on the efficient discovery of all interesting MDs in real-world datasets. For this purpose, we propose HyMD, a novel MD discovery algorithm that finds all minimal, non-trivial MDs within given similarity boundaries. The algorithm extracts the exact similarity thresholds for the individual MDs from the data instead of using predefined similarity thresholds. For this reason, it is the first approach to solve the MD discovery problem in an exact and truly complete way. If needed, the algorithm can, however, enforce certain properties on the reported MDs, such as disjointness and minimum support, to focus the discovery on such results that are actually required by downstream use cases. HyMD is technically a hybrid approach that combines the two most popular dependency discovery strategies in related work: lattice traversal and inference from record pairs. Despite the additional effort of finding exact similarity thresholds for all MD candidates, the algorithm is still able to efficiently process large datasets, e.g., datasets larger than 3 GB.
Partial clones
(2020)
A set C of operations defined on a nonempty set A is said to be a clone if C is closed under composition of operations and contains all projection mappings. The concept of a clone belongs to the algebraic main concepts and has important applications in Computer Science. A clone can also be regarded as a many-sorted algebra where the sorts are the n-ary operations defined on set A for all natural numbers n >= 1 and the operations are the so-called superposition operations S-m(n) for natural numbers m, n >= 1 and the projection operations as nullary operations. Clones generalize monoids of transformations defined on set A and satisfy three clone axioms. The most important axiom is the superassociative law, a generalization of the associative law. If the superposition operations are partial, i.e. not everywhere defined, instead of the many-sorted clone algebra, one obtains partial many-sorted algebras, the partial clones. Linear terms, linear tree languages or linear formulas form partial clones. In this paper, we give a survey on partial clones and their properties.
Synthetic Aperture Radar (SAR) amplitude measurements from spaceborne sensors are sensitive to surface roughness conditions near their radar wavelength. These backscatter signals are often exploited to assess the roughness of plowed agricultural fields and water surfaces, and less so to complex, heterogeneous geological surfaces. The bedload of mixed sand- and gravel-bed rivers can be considered a mixture of smooth (compacted sand) and rough (gravel) surfaces. Here, we assess backscatter gradients over a large high-mountain alluvial river in the eastern Central Andes with aerially exposed sand and gravel bedload using X-band TerraSAR-X/TanDEM-X, C-band Sentinel-1, and L-band ALOS-2 PALSAR-2 radar scenes. In a first step, we present theory and hypotheses regarding radar response to an alluvial channel bed. We test our hypotheses by comparing backscatter responses over vegetation-free endmember surfaces from inside and outside of the active channel-bed area. We then develop methods to extract smoothed backscatter gradients downstream along the channel using kernel density estimates. In a final step, the local variability of sand-dominated patches is analyzed using Fourier frequency analysis, by fitting stretched-exponential and power-law regression models to the 2-D power spectrum of backscatter amplitude. We find a large range in backscatter depending on the heterogeneity of contiguous smooth- and rough-patches of bedload material. The SAR amplitude signal responds primarily to the fraction of smooth-sand bedload, but is further modified by gravel elements. The sensitivity to gravel is more apparent in longer wavelength L-band radar, whereas C- and X-band is sensitive only to sand variability. Because the spatial extent of smooth sand patches in our study area is typically< 50 m, only higher resolution sensors (e.g., TerraSAR-X/TanDEM-X) are useful for power spectrum analysis. Our results show the potential for mapping sand-gravel transitions and local geomorphic complexity in alluvial rivers with aerially exposed bedload using SAR amplitude.