## Institut für Mathematik

### Refine

#### Year of publication

#### Document Type

- Article (1059)
- Monograph/Edited Volume (427)
- Preprint (378)
- Doctoral Thesis (150)
- Other (46)
- Postprint (32)
- Review (16)
- Conference Proceeding (8)
- Master's Thesis (7)
- Part of a Book (3)

#### Language

- English (1853)
- German (265)
- French (7)
- Italian (3)
- Multiple languages (1)

#### Keywords

- random point processes (19)
- statistical mechanics (19)
- stochastic analysis (19)
- index (14)
- Fredholm property (12)
- boundary value problems (12)
- cluster expansion (10)
- data assimilation (10)
- regularization (10)
- elliptic operators (9)

#### Institute

- Institut für Mathematik (2129)
- Extern (16)
- Department Psychologie (4)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (4)
- Institut für Biochemie und Biologie (3)
- Institut für Geowissenschaften (3)
- Institut für Umweltwissenschaften und Geographie (3)
- Institut für Physik und Astronomie (2)
- Department Grundschulpädagogik (1)
- Department Linguistik (1)

In this paper, we develop the mathematical tools needed to explore isotopy classes of tilings on hyperbolic surfaces of finite genus, possibly nonorientable, with boundary, and punctured. More specifically, we generalize results on Delaney-Dress combinatorial tiling theory using an extension of mapping class groups to orbifolds, in turn using this to study tilings of covering spaces of orbifolds. Moreover, we study finite subgroups of these mapping class groups. Our results can be used to extend the Delaney-Dress combinatorial encoding of a tiling to yield a finite symbol encoding the complexity of an isotopy class of tilings. The results of this paper provide the basis for a complete and unambiguous enumeration of isotopically distinct tilings of hyperbolic surfaces.

Model uncertainty quantification is an essential component of effective data assimilation. Model errors associated with sub-grid scale processes are often represented through stochastic parameterizations of the unresolved process. Many existing Stochastic Parameterization schemes are only applicable when knowledge of the true sub-grid scale process or full observations of the coarse scale process are available, which is typically not the case in real applications. We present a methodology for estimating the statistics of sub-grid scale processes for the more realistic case that only partial observations of the coarse scale process are available. Model error realizations are estimated over a training period by minimizing their conditional sum of squared deviations given some informative covariates (e.g., state of the system), constrained by available observations and assuming that the observation errors are smaller than the model errors. From these realizations a conditional probability distribution of additive model errors given these covariates is obtained, allowing for complex non-Gaussian error structures. Random draws from this density are then used in actual ensemble data assimilation experiments. We demonstrate the efficacy of the approach through numerical experiments with the multi-scale Lorenz 96 system using both small and large time scale separations between slow (coarse scale) and fast (fine scale) variables. The resulting error estimates and forecasts obtained with this new method are superior to those from two existing methods.

We show how to deduce Rellich inequalities from Hardy inequalities on infinite graphs. Specifically, the obtained Rellich inequality gives an upper bound on a function by the Laplacian of the function in terms of weighted norms. These weights involve the Hardy weight and a function which satisfies an eikonal inequality. The results are proven first for Laplacians and are extended to Schrodinger operators afterwards.

In this article, we propose an all-in-one statement which includes existence, uniqueness, regularity, and numerical approximations of mild solutions for a class of stochastic partial differential equations (SPDEs) with non-globally monotone nonlinearities. The proof of this result exploits the properties of an existing fully explicit space-time discrete approximation scheme, in particular the fact that it satisfies suitable a priori estimates. We also obtain almost sure and strong convergence of the approximation scheme to the mild solutions of the considered SPDEs. We conclude by applying the main result of the article to the stochastic Burgers equations with additive space-time white noise.

A sufficient quantitative understanding of aluminium (Al) toxicokinetics (TK) in man is still lacking, although highly desirable for risk assessment of Al exposure. Baseline exposure and the risk of contamination severely limit the feasibility of TK studies administering the naturally occurring isotope Al-27, both in animals and man. These limitations are absent in studies with Al-26 as a tracer, but tissue data are limited to animal studies. A TK model capable of inter-species translation to make valid predictions of Al levels in humans-especially in toxicological relevant tissues like bone and brain-is urgently needed. Here, we present: (i) a curated dataset which comprises all eligible studies with single doses of Al-26 tracer administered as citrate or chloride salts orally and/or intravenously to rats and humans, including ultra-long-term kinetic profiles for plasma, blood, liver, spleen, muscle, bone, brain, kidney, and urine up to 150 weeks; and (ii) the development of a physiology-based (PB) model for Al TK after intravenous and oral administration of aqueous Al citrate and Al chloride solutions in rats and humans. Based on the comprehensive curated Al-26 dataset, we estimated substance-dependent parameters within a non-linear mixed-effect modelling context. The model fitted the heterogeneous Al-26 data very well and was successfully validated against datasets in rats and humans. The presented PBTK model for Al, based on the most extensive and diverse dataset of Al exposure to date, constitutes a major advancement in the field, thereby paving the way towards a more quantitative risk assessment in humans.

We construct and examine the prototype of a deep learning-based ground-motion model (GMM) that is both fully data driven and nonergodic. We formulate ground-motion modeling as an image processing task, in which a specific type of neural network, the U-Net, relates continuous, horizontal maps of earthquake predictive parameters to sparse observations of a ground-motion intensity measure (IM). The processing of map-shaped data allows the natural incorporation of absolute earthquake source and observation site coordinates, and is, therefore, well suited to include site-, source-, and path-specific amplification effects in a nonergodic GMM. Data-driven interpolation of the IM between observation points is an inherent feature of the U-Net and requires no a priori assumptions. We evaluate our model using both a synthetic dataset and a subset of observations from the KiK-net strong motion network in the Kanto basin in Japan. We find that the U-Net model is capable of learning the magnitude???distance scaling, as well as site-, source-, and path-specific amplification effects from a strong motion dataset. The interpolation scheme is evaluated using a fivefold cross validation and is found to provide on average unbiased predictions. The magnitude???distance scaling as well as the site amplification of response spectral acceleration at a period of 1 s obtained for the Kanto basin are comparable to previous regional studies.

Transition path theory (TPT) for diffusion processes is a framework for analyzing the transitions of multiscale ergodic diffusion processes between disjoint metastable subsets of state space. Most methods for applying TPT involve the construction of a Markov state model on a discretization of state space that approximates the underlying diffusion process. However, the assumption of Markovianity is difficult to verify in practice, and there are to date no known error bounds or convergence results for these methods. We propose a Monte Carlo method for approximating the forward committor, probability current, and streamlines from TPT for diffusion processes. Our method uses only sample trajectory data and partitions of state space based on Voronoi tessellations. It does not require the construction of a Markovian approximating process. We rigorously prove error bounds for the approximate TPT objects and use these bounds to show convergence to their exact counterparts in the limit of arbitrarily fine discretization. We illustrate some features of our method by application to a process that solves the Smoluchowski equation on a triple-well potential.

In this work, we present Raman lidar data (from a Nd:YAG operating at 355 nm, 532 nm and 1064 nm) from the international research village Ny-Alesund for the time period of January to April 2020 during the Arctic haze season of the MOSAiC winter. We present values of the aerosol backscatter, the lidar ratio and the backscatter Angstrom exponent, though the latter depends on wavelength. The aerosol polarization was generally below 2%, indicating mostly spherical particles. We observed that events with high backscatter and high lidar ratio did not coincide. In fact, the highest lidar ratios (LR > 75 sr at 532 nm) were already found by January and may have been caused by hygroscopic growth, rather than by advection of more continental aerosol. Further, we performed an inversion of the lidar data to retrieve a refractive index and a size distribution of the aerosol. Our results suggest that in the free troposphere (above approximate to 2500 m) the aerosol size distribution is quite constant in time, with dominance of small particles with a modal radius well below 100 nm. On the contrary, below approximate to 2000 m in altitude, we frequently found gradients in aerosol backscatter and even size distribution, sometimes in accordance with gradients of wind speed, humidity or elevated temperature inversions, as if the aerosol was strongly modified by vertical displacement in what we call the "mechanical boundary layer". Finally, we present an indication that additional meteorological soundings during MOSAiC campaign did not necessarily improve the fidelity of air backtrajectories.

We prove a homology vanishing theorem for graphs with positive Bakry-' Emery curvature, analogous to a classic result of Bochner on manifolds [3]. Specifically, we prove that if a graph has positive curvature at every vertex, then its first homology group is trivial, where the notion of homology that we use for graphs is the path homology developed by Grigor'yan, Lin, Muranov, and Yau [11]. We moreover prove that the fundamental group is finite for graphs with positive Bakry-' Emery curvature, analogous to a classic result of Myers on manifolds [22]. The proofs draw on several separate areas of graph theory, including graph coverings, gain graphs, and cycle spaces, in addition to the Bakry-Emery curvature, path homology, and graph homotopy. The main results follow as a consequence of several different relationships developed among these different areas. Specifically, we show that a graph with positive curvature cannot have a non-trivial infinite cover preserving 3-cycles and 4-cycles, and give a combinatorial interpretation of the first path homology in terms of the cycle space of a graph. Furthermore, we relate gain graphs to graph homotopy and the fundamental group developed by Grigor'yan, Lin, Muranov, and Yau [12], and obtain an alternative proof of their result that the abelianization of the fundamental group of a graph is isomorphic to the first path homology over the integers.