## Institut für Mathematik

### Refine

#### Year of publication

#### Document Type

- Article (1012)
- Monograph/Edited Volume (427)
- Preprint (378)
- Doctoral Thesis (148)
- Other (46)
- Postprint (29)
- Review (16)
- Conference Proceeding (7)
- Master's Thesis (6)
- Part of a Book (3)

#### Language

- English (1801)
- German (262)
- French (7)
- Italian (3)
- Multiple languages (1)

#### Keywords

- random point processes (19)
- statistical mechanics (19)
- stochastic analysis (19)
- index (13)
- boundary value problems (12)
- Fredholm property (11)
- cluster expansion (10)
- elliptic operators (9)
- regularization (9)
- Cauchy problem (8)

#### Institute

- Institut für Mathematik (2074)
- Extern (16)
- Department Psychologie (4)
- Interdisziplinäres Zentrum für Dynamik komplexer Systeme (4)
- Institut für Biochemie und Biologie (2)
- Institut für Geowissenschaften (2)
- Institut für Physik und Astronomie (2)
- Institut für Umweltwissenschaften und Geographie (2)
- Department Linguistik (1)
- Department Sport- und Gesundheitswissenschaften (1)

Data-driven prediction and physics-agnostic machine-learning methods have attracted increased interest in recent years achieving forecast horizons going well beyond those to be expected for chaotic dynamical systems. In a separate strand of research data-assimilation has been successfully used to optimally combine forecast models and their inherent uncertainty with incoming noisy observations. The key idea in our work here is to achieve increased forecast capabilities by judiciously combining machine-learning algorithms and data assimilation. We combine the physics-agnostic data -driven approach of random feature maps as a forecast model within an ensemble Kalman filter data assimilation procedure. The machine-learning model is learned sequentially by incorporating incoming noisy observations. We show that the obtained forecast model has remarkably good forecast skill while being computationally cheap once trained. Going beyond the task of forecasting, we show that our method can be used to generate reliable ensembles for probabilistic forecasting as well as to learn effective model closure in multi-scale systems. (C) 2021 Elsevier B.V. All rights reserved.

In this paper, we bring together the worlds of model order reduction for stochastic linear systems and H-2-optimal model order reduction for deterministic systems. In particular, we supplement and complete the theory of error bounds for model order reduction of stochastic differential equations. With these error bounds, we establish a link between the output error for stochastic systems (with additive and multiplicative noise) and modified versions of the H-2-norm for both linear and bilinear deterministic systems. When deriving the respective optimality conditions for minimizing the error bounds, we see that model order reduction techniques related to iterative rational Krylov algorithms (IRKA) are very natural and effective methods for reducing the dimension of large-scale stochastic systems with additive and/or multiplicative noise. We apply modified versions of (linear and bilinear) IRKA to stochastic linear systems and show their efficiency in numerical experiments.

In this paper Lie group method in combination with Magnus expansion is utilized to develop a universal method applicable to solving a Sturm–Liouville problem (SLP) of any order with arbitrary boundary conditions. It is shown that the method has ability to solve direct regular (and some singular) SLPs of even orders (tested for up to eight), with a mix of (including non-separable and finite singular endpoints) boundary conditions, accurately and efficiently. The present technique is successfully applied to overcome the difficulties in finding suitable sets of eigenvalues so that the inverse SLP problem can be effectively solved. The inverse SLP algorithm proposed by Barcilon (1974) is utilized in combination with the Magnus method so that a direct SLP of any (even) order and an inverse SLP of order two can be solved effectively.

In this paper, we investigate the continuous version of modified iterative Runge–Kutta-type methods for nonlinear inverse ill-posed problems proposed in a previous work. The convergence analysis is proved under the tangential cone condition, a modified discrepancy principle, i.e., the stopping time T is a solution of ∥𝐹(𝑥𝛿(𝑇))−𝑦𝛿∥=𝜏𝛿+ for some 𝛿+>𝛿, and an appropriate source condition. We yield the optimal rate of convergence.

Global numerical weather prediction (NWP) models have begun to resolve the mesoscale k(-5/3) range of the energy spectrum, which is known to impose an inherently finite range of deterministic predictability per se as errors develop more rapidly on these scales than on the larger scales. However, the dynamics of these errors under the influence of the synoptic-scale k(-3) range is little studied. Within a perfect-model context, the present work examines the error growth behavior under such a hybrid spectrum in Lorenz's original model of 1969, and in a series of identical-twin perturbation experiments using an idealized two-dimensional barotropic turbulence model at a range of resolutions. With the typical resolution of today's global NWP ensembles, error growth remains largely uniform across scales. The theoretically expected fast error growth characteristic of a k(-5/3) spectrum is seen to be largely suppressed in the first decade of the mesoscale range by the synoptic-scale k(-3) range. However, it emerges once models become fully able to resolve features on something like a 20-km scale, which corresponds to a grid resolution on the order of a few kilometers.

This work provides a necessary and sufficient condition for a symbolic dynamical system to admit a sequence of periodic approximations in the Hausdorff topology. The key result proved and applied here uses graphs that are called De Bruijn graphs, Rauzy graphs, or Anderson-Putnam complex, depending on the community. Combining this with a previous result, the present work justifies rigorously the accuracy and reliability of algorithmic methods used to compute numerically the spectra of a large class of self-adjoint operators. The so-called Hamiltonians describe the effective dynamic of a quantum particle in aperiodic media. No restrictions on the structure of these operators other than general regularity assumptions are imposed. In particular, nearest-neighbor correlation is not necessary. Examples for the Fibonacci and the Golay-Rudin-Shapiro sequences are explicitly provided illustrating this discussion. While the first sequence has been thoroughly studied by physicists and mathematicians alike, a shroud of mystery still surrounds the latter when it comes to spectral properties. In light of this, the present paper gives a new result here that might help uncovering a solution.

This thesis bridges two areas of mathematics, algebra on the one hand with the Milnor-Moore theorem (also called Cartier-Quillen-Milnor-Moore theorem) as well as the Poincaré-Birkhoff-Witt theorem, and analysis on the other hand with Shintani zeta functions which generalise multiple zeta functions.
The first part is devoted to an algebraic formulation of the locality principle in physics and generalisations of classification theorems such as Milnor-Moore and Poincaré-Birkhoff-Witt theorems to the locality framework. The locality principle roughly says that events that take place far apart in spacetime do not infuence each other. The algebraic formulation of this principle discussed here is useful when analysing singularities which arise from events located far apart in space, in order to renormalise them while keeping a memory of the fact that they do not influence each other. We start by endowing a vector space with a symmetric relation, named the locality relation, which keeps track of elements that are "locally independent". The pair of a vector space together with such relation is called a pre-locality vector space. This concept is extended to tensor products allowing only tensors made of locally independent elements. We extend this concept to the locality tensor algebra, and locality symmetric algebra of a pre-locality vector space and prove the universal properties of each of such structures. We also introduce the pre-locality Lie algebras, together with their associated locality universal enveloping algebras and prove their universal property. We later upgrade all such structures and results from the pre-locality to the locality context, requiring the locality relation to be compatible with the linear structure of the vector space. This allows us to define locality coalgebras, locality bialgebras, and locality Hopf algebras. Finally, all the previous results are used to prove the locality version of the Milnor-Moore and the Poincaré-Birkhoff-Witt theorems. It is worth noticing that the proofs presented, not only generalise the results in the usual (non-locality) setup, but also often use less tools than their counterparts in their non-locality counterparts.
The second part is devoted to study the polar structure of the Shintani zeta functions. Such functions, which generalise the Riemman zeta function, multiple zeta functions, Mordell-Tornheim zeta functions, among others, are parametrised by matrices with real non-negative arguments. It is known that Shintani zeta functions extend to meromorphic functions with poles on afine hyperplanes. We refine this result in showing that the poles lie on hyperplanes parallel to the facets of certain convex polyhedra associated to the defining matrix for the Shintani zeta function. Explicitly, the latter are the Newton polytopes of the polynomials induced by the columns of the underlying matrix. We then prove that the coeficients of the equation which describes the hyperplanes in the canonical basis are either zero or one, similar to the poles arising when renormalising generic Feynman amplitudes. For that purpose, we introduce an algorithm to distribute weight over a graph such that the weight at each vertex satisfies a given lower bound.

Analysis of protrusion dynamics in amoeboid cell motility by means of regularized contour flows
(2021)

Amoeboid cell motility is essential for a wide range of biological processes including wound healing, embryonic morphogenesis, and cancer metastasis. It relies on complex dynamical patterns of cell shape changes that pose long-standing challenges to mathematical modeling and raise a need for automated and reproducible approaches to extract quantitative morphological features from image sequences. Here, we introduce a theoretical framework and a computational method for obtaining smooth representations of the spatiotemporal contour dynamics from stacks of segmented microscopy images. Based on a Gaussian process regression we propose a one-parameter family of regularized contour flows that allows us to continuously track reference points (virtual markers) between successive cell contours. We use this approach to define a coordinate system on the moving cell boundary and to represent different local geometric quantities in this frame of reference. In particular, we introduce the local marker dispersion as a measure to identify localized membrane expansions and provide a fully automated way to extract the properties of such expansions, including their area and growth time. The methods are available as an open-source software package called AmoePy, a Python-based toolbox for analyzing amoeboid cell motility (based on time-lapse microscopy data), including a graphical user interface and detailed documentation. Due to the mathematical rigor of our framework, we envision it to be of use for the development of novel cell motility models. We mainly use experimental data of the social amoeba Dictyostelium discoideum to illustrate and validate our approach. <br /> Author summary Amoeboid motion is a crawling-like cell migration that plays an important key role in multiple biological processes such as wound healing and cancer metastasis. This type of cell motility results from expanding and simultaneously contracting parts of the cell membrane. From fluorescence images, we obtain a sequence of points, representing the cell membrane, for each time step. By using regression analysis on these sequences, we derive smooth representations, so-called contours, of the membrane. Since the number of measurements is discrete and often limited, the question is raised of how to link consecutive contours with each other. In this work, we present a novel mathematical framework in which these links are described by regularized flows allowing a certain degree of concentration or stretching of neighboring reference points on the same contour. This stretching rate, the so-called local dispersion, is used to identify expansions and contractions of the cell membrane providing a fully automated way of extracting properties of these cell shape changes. We applied our methods to time-lapse microscopy data of the social amoeba Dictyostelium discoideum.