### Refine

#### Year of publication

#### Document Type

- Article (36)
- Monograph/Edited Volume (6)
- Preprint (6)
- Postprint (3)
- Part of a Book (2)
- Doctoral Thesis (1)
- Other (1)

#### Keywords

- aerosol size distribution (4)
- inverse ill-posed problem (3)
- iterative regularization (3)
- multiwavelength lidar (3)
- 47A52 (2)
- 65R20 (2)
- 65R32 (2)
- 78A46 (2)
- Aerosols (2)
- Boundary value methods (2)

This paper examines and develops matrix methods to approximate the eigenvalues of a fourth order Sturm-Liouville problem subjected to a kind of fixed boundary conditions, furthermore, it extends the matrix methods for a kind of general boundary conditions. The idea of the methods comes from finite difference and Numerov's method as well as boundary value methods for second order regular Sturm-Liouville problems. Moreover, the determination of the correction term formulas of the matrix methods are investigated in order to obtain better approximations of the problem with fixed boundary conditions since the exact eigenvalues for q = 0 are known in this case. Finally, some numerical examples are illustrated.

The ill-posed problem of aerosol size distribution determination from a small number of backscatter and extinction measurements was solved successfully with a mollifier method which is advantageous since the ill-posed part is performed on exactly given quantities, the points r where n(r) is evaluated may be freely selected. A new twodimensional model for the troposphere is proposed.

In this work we extract the microphysical properties of aerosols for a collection of measurement cases with low volume depolarization ratio originating from fire sources captured by the Raman lidar located at the National Institute of Optoelectronics (INOE) in Bucharest. Our algorithm was tested not only for pure smoke but also for mixed smoke and urban aerosols of variable age and growth. Applying a sensitivity analysis on initial parameter settings of our retrieval code was proved vital for producing semi-automatized retrievals with a hybrid regularization method developed at the Institute of Mathematics of Potsdam University. A direct quantitative comparison of the retrieved microphysical properties with measurements from a Compact Time of Flight Aerosol Mass Spectrometer (CToF-AMS) is used to validate our algorithm. Microphysical retrievals performed with sun photometer data are also used to explore our results. Focusing on the fine mode we observed remarkable similarities between the retrieved size distribution and the one measured by the AMS. More complicated atmospheric structures and the factor of absorption appear to depend more on particle radius being subject to variation. A good correlation was found between the aerosol effective radius and particle age, using the ratio of lidar ratios (LR: aerosol extinction to backscatter ratios) as an indicator for the latter. Finally, the dependence on relative humidity of aerosol effective radii measured on the ground and within the layers aloft show similar patterns. (C) 2015 Elsevier Inc. All rights reserved.

Regularized inversion of microphysical atmospheric particle parameters - theory and application
(2013)

Retrieving the distribution of aerosols in the atmosphere via remote sensing techniques is a highly complex task that requires dealing with a wide range of different problems stemming both from Physics and Mathematics. We focus on retrieving this distribution from multi-wavelength lidar data for aerosol ensembles consisting of spherical particles via an iterative regularization technique. The optical efficiencies for spherical scatterers are examined to account for the behavior of the underlying integral equation. The ill-posedness of the problem and the conditioning of the discretized problem are analyzed. Some critical points in the model, like the assumed wavelength-independence of the refractive index and the fixed grid of investigated refractive indices, are studied with regard to their expected impact on the regularized solution. A new Monte-Carlo type method is proposed for retrieval of the refractive index. To validate the results, the developed algorithm is applied to two measurement cases of burning biomass gained from multi-wavelength Raman lidar.

In this paper a technique to obtain a first approximation for singular inverse Sturm-Liouville problems with a symmetrical potential is introduced. The singularity, as a result of unbounded domain (-infinity, infinity), is treated by considering numerically the asymptotic limit of the associated problem on a finite interval (-L, L). In spite of this treatment, the problem has still an ill-conditioned structure unlike the classical regular ones and needs regularization techniques. Direct computation of eigenvalues in iterative solution procedure is made by means of pseudospectral methods. A fairly detailed description of the numerical algorithm and its applications to specific examples are presented to illustrate the accuracy and convergence behaviour of the proposed approach.

Retrieval of aerosol extinction coefficient profiles from Raman lidar data by inversion method
(2012)

We regard the problem of differentiation occurring in the retrieval of aerosol extinction coefficient profiles from inelastic Raman lidar signals by searching for a stable solution of the resulting Volterra integral equation. An algorithm based on a projection method and iterative regularization together with the L-curve method has been performed on synthetic and measured lidar signals. A strategy to choose a suitable range for the integration within the framework of the retrieval of optical properties is proposed here for the first time to our knowledge. The Monte Carlo procedure has been adapted to treat the uncertainty in the retrieval of extinction coefficients.

This paper examines and develops matrix methods to approximate the eigenvalues of a fourth order Sturm-Liouville problem subjected to a kind of fixed boundary conditions. Furthermore, it extends the matrix methods for a kind of general boundary conditions. The idea of the methods comes from finite difference and Numerov's methods as well as boundary value methods for second order regular Sturm-Liouville problems. Moreover, the determination of the correction term formulas of the matrix methods is investigated in order to obtain better approximations of the problem with fixed boundary conditions since the exact eigenvalues for q = 0 are known in this case. Finally, some numerical examples are illustrated.

In this paper we present a method to recover symmetric and non-symmetric potential functions of inverse Sturm- Liouville problems from the knowledge of eigenvalues. The linear multistep method coupled with suitable boundary conditions known as boundary value method (BVM) is the main tool to approximate the eigenvalues in each iteration step of the used Newton method. The BVM was extended to work for Neumann-Neumann boundary conditions. Moreover, a suitable approximation for the asymptotic correction of the eigenvalues is given. Numerical results demonstrate that the method is able to give good results for both symmetric and non-symmetric potentials.