The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 34 of 3673
Back to Result List

Machine learning in crop yield modelling

  • Provisioning a sufficient stable source of food requires sound knowledge about current and upcoming threats to agricultural production. To that end machine learning approaches were used to identify the prevailing climatic and soil hydrological drivers of spatial and temporal yield variability of four crops, comprising 40 years yield data each from 351 counties in Germany. Effects of progress in agricultural management and breeding were subtracted from the data prior the machine learning modelling by fitting smooth non-linear trends to the 95th percentiles of observed yield data. An extensive feature selection approach was followed then to identify the most relevant predictors out of a large set of candidate predictors, comprising various soil and meteorological data. Particular emphasis was placed on studying the uniqueness of identified key predictors. Random Forest and Support Vector Machine models yielded similar although not identical results, capturing between 50% and 70% of the spatial and temporal variance of silage maize,Provisioning a sufficient stable source of food requires sound knowledge about current and upcoming threats to agricultural production. To that end machine learning approaches were used to identify the prevailing climatic and soil hydrological drivers of spatial and temporal yield variability of four crops, comprising 40 years yield data each from 351 counties in Germany. Effects of progress in agricultural management and breeding were subtracted from the data prior the machine learning modelling by fitting smooth non-linear trends to the 95th percentiles of observed yield data. An extensive feature selection approach was followed then to identify the most relevant predictors out of a large set of candidate predictors, comprising various soil and meteorological data. Particular emphasis was placed on studying the uniqueness of identified key predictors. Random Forest and Support Vector Machine models yielded similar although not identical results, capturing between 50% and 70% of the spatial and temporal variance of silage maize, winter barley, winter rapeseed and winter wheat yield. Equally good performance could be achieved with different sets of predictors. Thus identification of the most reliable models could not be based on the outcome of the model study only but required expert's judgement. Relationships between drivers and response often exhibited optimum curves, especially for summer air temperature and precipitation. In contrast, soil moisture clearly proved less relevant compared to meteorological drivers. In view of the expected climate change both excess precipitation and the excess heat effect deserve more attention in breeding as well as in crop modelling.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Gunnar LischeidORCiDGND, Heidi WebberORCiD, Michael SommerORCiDGND, Claas NendelORCiDGND, Frank EwertORCiDGND
DOI:https://doi.org/10.1016/j.agrformet.2021.108698
ISSN:0168-1923
ISSN:1873-2240
Title of parent work (English):Agricultural and forest meteorology
Subtitle (English):A powerful tool, but no surrogate for science
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Date of first publication:2021/11/10
Publication year:2022
Release date:2024/02/21
Tag:Crop modelling; Equivocality; Feature selection; Machine learning; Random forests; Support vector; machine
Volume:312
Article number:108698
Number of pages:23
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
6 Technik, Medizin, angewandte Wissenschaften / 63 Landwirtschaft / 630 Landwirtschaft und verwandte Bereiche
6 Technik, Medizin, angewandte Wissenschaften / 64 Hauswirtschaft und Familie / 640 Hauswirtschaft und Familie
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.