• Deutsch

University Logo

  • Home
  • Search
  • Browse
  • Submit
  • Sitemap
Schließen

Refine

Has Fulltext

  • no (22)
  • yes (1)

Author

  • Lischeid, Gunnar (23)
  • Dietrich, Ottfried (7)
  • Dannowski, Ralf (3)
  • Hohenbrink, Tobias L. (3)
  • Kalettka, Thomas (3)
  • Steidl, Joerg (3)
  • Steidl, Jörg (3)
  • Fahle, Marcus (2)
  • Gerke, Horst H. (2)
  • Großart, Hans-Peter (2)
+ more

Year of publication

  • 2019 (1)
  • 2018 (1)
  • 2017 (2)
  • 2016 (6)
  • 2015 (5)
  • 2014 (3)
  • 2013 (1)
  • 2012 (3)
  • 2009 (1)

Document Type

  • Article (20)
  • Monograph/Edited Volume (1)
  • Postprint (1)
  • Review (1)

Language

  • English (21)
  • German (2)

Is part of the Bibliography

  • yes (23)

Keywords

  • Principal component analysis (3)
  • evapotranspiration (3)
  • wetland (3)
  • Catchment classification (2)
  • Monitoring (2)
  • Numerical experiment (2)
  • Soil heterogeneity (2)
  • Water quality (2)
  • groundwater level (2)
  • water balance (2)
+ more

Institute

  • Institut für Geowissenschaften (21)
  • Institut für Biochemie und Biologie (2)
  • Institut für Umweltwissenschaften und Geographie (1)
  • Mathematisch-Naturwissenschaftliche Fakultät (1)
  • Sozialwissenschaften (1)

23 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Das Ganze ist weniger als die Summe seiner Teile : neue Ansätze in der Landschaftshydrologie : Antrittsvorlesung 2009-06-18 (2009)
Lischeid, Gunnar
Ernährungssicherheit und zukünftige Landnutzungen (2014)
Wiggering, Hubert ; Lischeid, Gunnar ; Müller, Klaus ; Ende, Hans-Peter
A guideline for developing an initial hydrological monotoring network as a basis for water management in artificially drained wetlands (2013)
Fahle, Marcus ; Dietrich, Ottfried ; Lischeid, Gunnar
Reliable hydrological monitoring is the basis for sound water management in drained wetlands. Since statistical methods cannot be employed for unobserved or sparsely monitored areas, the primary design (first set-up) may be arbitrary in most instances. The objective of this paper is therefore to provide a guideline for designing the initial hydrological monitoring network. A scheme is developed that handles different parts of monitoring and hydrometry in wetlands, focusing on the positioning of surface water and groundwater gauges. For placement of the former, control units are used which correspond to areas whose water levels can be regulated separately. The latter are arranged depending on hydrological response units, defined by combinations of soil type and land use, and the chosen surface water monitoring sites. A practical application of the approach is shown for an investigation area in the Spreewald region in north-east Germany. The presented scheme leaves a certain degree of freedom to its user, allowing the inclusion of expert knowledge or special concerns. Based on easily obtainable data, the developed hydrological network serves as a first step in the iterative procedure of monitoring network optimisation. Copyright (c) 2013 John Wiley & Sons, Ltd.
A novel method to evaluate the effect of a stream restoration on the spatial pattern of hydraulic connection of stream and groundwater (2015)
Lehr, C. ; Pöschke, Franziska ; Lewandowski, Jörg ; Lischeid, Gunnar
Stream restoration aims at an enhancement of ecological habitats, an increase of water retention within a landscape and sometimes even at an improvement of biogeochemical functions of lotic ecosystems. For the latter, good exchange between groundwater and stream water is often considered to be of major importance. In this study hydraulic connectivity between river and aquifer was investigated for a four years period, covering the restoration of an old oxbow after the second year. The oxbow became reconnected to the stream and the clogging layer in the oxbow was excavated. We expected increasing hydraulic connectivity between oxbow and aquifer after restoration of the stream, and decreasing hydraulic connectivity for the former shortcut due to increased clogging. To test that hypothesis, the spatial and temporal characteristics of the coupled groundwater-stream water system before and after the restoration were analysed by principal component analyses of time series of groundwater heads and stream water levels. The first component depicted between 53% and 70% of the total variance in the dataset for the different years. It captured the propagation of the pressure signal induced by stream water level fluctuations throughout the adjacent aquifer. Thus it could be used as a measure of hydraulic connectivity between stream and aquifer. During the first year, the impact of stream water level fluctuations decreased with distance from the regulated river (shortcut), whereas the hydraulic connection of the oxbow to the adjacent aquifer was very low. After restoration of the stream we observed a slight but not significant increase of hydraulic connectivity in the oxbow in the second year after restoration, but no change for the former shortcut. There is some evidence that the pattern of hydraulic connectivity at the study site is by far more determined by the natural heterogeneity of hydraulic conductivities of the floodplain sediments and the initial construction of the shortcut rather than by the clogging layer in the oxbow. (C) 2015 The Authors. Published by Elsevier B.V.
Using Isomap to differentiate between anthropogenic and natural effects on groundwater dynamics in a complex geological setting (2014)
Böttcher, Steven ; Merz, Christoph ; Lischeid, Gunnar ; Dannowski, Ralf
Due to increasing demands and competition for high quality groundwater resources in many parts of the world, there is an urgent need for efficient methods that shed light on the interplay between complex natural settings and anthropogenic impacts. Thus a new approach is introduced, that aims to identify and quantify the predominant processes or factors of influence that drive groundwater and lake water dynamics on a catchment scale. The approach involves a non-linear dimension reduction method called Isometric feature mapping (Isomap). This method is applied to time series of groundwater head and lake water level data from a complex geological setting in Northeastern Germany. Two factors explaining more than 95% of the observed spatial variations are identified: (1) the anthropogenic impact of a waterworks in the study area and (2) natural groundwater recharge with different degrees of dampening at the respective sites of observation. The approach enables a presumption-free assessment to be made of the existing geological conception in the catchment, leading to an extension of the conception. Previously unknown hydraulic connections between two aquifers are identified, and connections revealed between surface water bodies and groundwater. (C) 2014 Elsevier B.V. All rights reserved.
Long term shift of low flows predictors in small lowland catchments of Northeast Germany (2015)
Thomas, Björn ; Lischeid, Gunnar ; Steidl, Jörg ; Dietrich, Ottfried
Runoff, especially during summer months, and low flows have decreased in Central and Eastern Europe during the last decades. A detailed knowledge on predictors and dependencies between meteorological forcing, catchment properties and low flow is necessary to optimize regional adaption strategies to sustain minimum runoff. The objective of this study is to identify low flow predictors for 16 small catchments in Northeast Germany and their long-term shifts between 1965 and 2006. Non-linear regression models (support vector machine regression) were calibrated to iteratively select the most powerful low flow predictors regarding annual 30-day minimum flow (AM(30)). The data set consists of standardized precipitation (SPI) and potential evapotranspiration (SpETI) indices on different time scales and lag times. The potential evapotranspiration of the previous 48 and 3 months, as well as the precipitation of the previous 3 months and last year were the most relevant predictors for AM(30). Pearson correlation (r(2)) of the final model is 0.49 and if for every year the results for all catchments are averaged r(2) increases to 0.80 because extremes are smoothing out. Evapotranspiration was the most important low flow predictor for the study period. However, distinct long-term shifts in the predictive power of variables became apparent. The potential evapotranspiration of the previous 48 months explained most of the variance, but its relevance decreased during the last decades. The importance of precipitation variables increased with time. Model performance was higher at catchments with a more damped discharge behavior. The results indicate changes in the relevant processes or flow paths generating low flows. The identified predictors, temporal patterns and patterns between catchments will support the development of low flow monitoring systems and determine those catchments where adaption measures should aim more at increasing groundwater recharge. (C) 2014 Elsevier B.V. All rights reserved.
Temporal variability of the optimal monitoring setup assessed using information theory (2015)
Fahle, Marcus ; Hohenbrink, Tobias L. ; Dietrich, Ottfried ; Lischeid, Gunnar
Hydrology is rich in methods that use information theory to evaluate monitoring networks. Yet in most existing studies, only the available data set as a whole is used, which neglects the intraannual variability of the hydrological system. In this paper, we demonstrate how this variability can be considered by extending monitoring evaluation to subsets of the available data. Therefore, we separately evaluated time windows of fixed length, which were shifted through the data set, and successively extended time windows. We used basic information theory measures and a greedy ranking algorithm based on the criterion of maximum information/minimum redundancy. The network investigated monitored surface and groundwater levels at quarter-hourly intervals and was located at an artificially drained lowland site in the Spreewald region in north-east Germany. The results revealed that some of the monitoring stations were of value permanently while others were needed only temporally. The prevailing meteorological conditions, particularly the amount of precipitation, affected the degree of similarity between the water levels measured. The hydrological system tended to act more individually during periods of no or little rainfall. The optimal monitoring setup, its stability, and the monitoring effort necessary were influenced by the meteorological forcing. Altogether, the methodology presented can help achieve a monitoring network design that has a more even performance or covers the conditions of interest (e.g., floods or droughts) best.
Transit times of water under steady stormflow conditions in the Gardsjon G1 catchment (2015)
Selle, Benny ; Lange, Holger ; Lischeid, Gunnar ; Hauhs, Michael
In this paper we report on a series of replicated tracer experiments with deuterium conducted under controlled, steady stormflow conditions at the Gardsjon G1 catchment in south-western Sweden. In five different years, these experiments were carried out in a subcatchment of G1. Deuterium was applied as a narrow pulse so that distributions of water transit times could be directly inferred from the observed tracer breakthrough curves. Significantly different transit times of water were observed under similar experimental conditions. Coefficients of variation for estimated mean transit times were greater than 60%, which can be understood as a measure of the interannual variability for this type of experiments. Implications for water transit times under more natural flow conditions as wells as for future experimentation are discussed. Copyright (c) 2015 John Wiley & Sons, Ltd.
Does textural heterogeneity matter? Quantifying transformation of hydrological signals in soils (2015)
Hohenbrink, Tobias L. ; Lischeid, Gunnar
Textural heterogeneity causes complex water flow patterns and soil moisture dynamics in soils that hamper monitoring and modeling soil hydrological processes. These patterns can be generated by process based models considering soil texture heterogeneities. However, there is urgent need for tools for the inverse approach, that is, to analyze observed dynamics in a quantitative way independent from any model approach in order to identify effects of soil texture heterogeneity. Here, studying the transformation of hydrological input signals (e.g., rainfall, snow melt) propagating through the vadose zone is a promising supplement to the common perspective of mass flux considerations. In this study we applied a recently developed new approach for quantitative analysis of hydrological time series (i) to investigate the effect of soil texture on the signal transformation behavior and (ii) to analyze to what degree soil moisture dynamics from a heterogeneous profile can be reproduced by a corresponding homogenous substrate. We used simulation models to generate three data sets of soil moisture time series considering homogeneous substrates (HOM), homogeneous substrates with noise added (NOISE), and heterogeneous substrates (HET). The soil texture classes sand, loamy sand, clay loam and silt were considered. We applied a principal component analysis (also called empirical orthogonal functions) to identify predominant functional patterns and to measure the degree of signal transformation of single time series. For the HOM case 86.7% of the soil moisture dynamics were reproduced by the first two principal components. Based on these results a quantitative measure for the degree of transformation of the input signal was derived. The general nature of signal transformation was nearly identical in all textures, but the intensity of signal damping per depth interval decreased from fine to coarse textures. The same functional patterns occurred in the HET data set. However, here the signal damping of time series did not increase monotonically with soil depth. The analysis succeeded in extracting the same signal transformation behavior from the NOISE data set compared to that of the HOM case in spite of being blurred by random noise. Thus, principal component analysis proved to be a very robust tool to disentangle between independent effects and to measure the degree of transformation of the input signal. The suggested approach can be used for (i) data processing, including subtracting measurement noise (ii) identification of factors controlling soil water dynamics, (iii) assessing the mean signal transformation in heterogeneous soils based on observed soil moisture time series, and (iv) model building, calibration and evaluation. (C) 2015 Elsevier B.V. All rights reserved.
Effects of data and model simplification on the results of a wetland water resource management model (2016)
Dietrich, Ottfried ; Schweigert, Susanne ; Steidl, Jörg ; Lischeid, Gunnar
This paper presents the development of a wetland water balance model for use in a large river basin with many different wetlands. The basic model was primarily developed for a single wetland with a complex water management system involving large amounts of specialized input data and water management details. The aim was to simplify the model structure and to use only commonly available data as input for the model, with the least possible loss of accuracy. Results from different variants of the model and data adaptation were tested against results from a detailed model. This shows that using commonly available data and unifying and simplifying the input data is tolerable up to a certain level. The simplification of the model has greater effects on the evaluated water balance components than the data adaptation. Because this simplification was necessary for large-scale use, we suggest that, for reasons of comparability, simpler models should always be applied with uniform data bases for large regions, though these should only be moderately simplified. Further, we recommend using these simplified models only for large-scale comparisons and using more specific, detailed models for investigations on smaller scales.
  • 1 to 10

OPUS4 Logo  KOBV Logo  OAI Logo  DINI Zertifikat 2007  OA Netzwerk Logo

    • Institutional Repository
    • University Bibliography
    • University Library
    • Policy
    • Contact
    • Imprint
    • Privacy Policy
    • Accessibility

    Login