• Treffer 1 von 3
Zurück zur Trefferliste

Inference of chemical reaction networks based on concentration profiles using an optimization framework

  • Understanding the structure of reaction networks along with the underlying kinetics that lead to particular concentration readouts of the participating components is the first step toward optimization and control of (bio-)chemical processes. Yet, solutions to the problem of inferring the structure of reaction networks, i.e., characterizing the stoichiometry of the participating reactions provided concentration profiles of the participating components, remain elusive. Here, we present an approach to infer the stoichiometric subspace of a chemical reaction network from steady-state concentration data profiles obtained from a continuous isothermal reactor. The subsequent problem of finding reactions consistent with the observed subspace is cast as a series of mixed-integer linear programs whose solution generates potential reaction vectors together with a measure of their likelihood. We demonstrate the efficiency and applicability of the proposed approach using data obtained from synthetic reaction networks and from a well-establishedUnderstanding the structure of reaction networks along with the underlying kinetics that lead to particular concentration readouts of the participating components is the first step toward optimization and control of (bio-)chemical processes. Yet, solutions to the problem of inferring the structure of reaction networks, i.e., characterizing the stoichiometry of the participating reactions provided concentration profiles of the participating components, remain elusive. Here, we present an approach to infer the stoichiometric subspace of a chemical reaction network from steady-state concentration data profiles obtained from a continuous isothermal reactor. The subsequent problem of finding reactions consistent with the observed subspace is cast as a series of mixed-integer linear programs whose solution generates potential reaction vectors together with a measure of their likelihood. We demonstrate the efficiency and applicability of the proposed approach using data obtained from synthetic reaction networks and from a well-established biological model for the Calvin-Benson cycle. Furthermore, we investigate the effect of missing information, in the form of unmeasured species or insufficient diversity within the data set, on the ability to accurately reconstruct the network reactions. The proposed framework is, in principle, applicable to many other reaction systems, thus providing future extensions to understanding reaction networks guiding chemical reactors and complex biological mixtures. (C) 2019 Author(s).zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Damoun LangaryORCiD, Zoran NikoloskiORCiDGND
DOI:https://doi.org/10.1063/1.5120598
ISSN:1054-1500
ISSN:1089-7682
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/31779367
Titel des übergeordneten Werks (Englisch):Chaos : an interdisciplinary journal of nonlinear science
Verlag:American Institute of Physics
Verlagsort:Melville
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Erscheinungsjahr:2019
Datum der Freischaltung:06.10.2020
Band:29
Ausgabe:11
Seitenanzahl:12
Fördernde Institution:BASF; hte GmbH
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer Review:Referiert
Publikationsweg:Open Access
Open Access / Hybrid Open-Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.