• Treffer 1 von 1
Zurück zur Trefferliste

Evolutionary algorithms and submodular functions

  • A core operator of evolutionary algorithms (EAs) is the mutation. Recently, much attention has been devoted to the study of mutation operators with dynamic and non-uniform mutation rates. Following up on this area of work, we propose a new mutation operator and analyze its performance on the (1 + 1) Evolutionary Algorithm (EA). Our analyses show that this mutation operator competes with pre-existing ones, when used by the (1 + 1) EA on classes of problems for which results on the other mutation operators are available. We show that the (1 + 1) EA using our mutation operator finds a (1/3)-approximation ratio on any non-negative submodular function in polynomial time. We also consider the problem of maximizing a symmetric submodular function under a single matroid constraint and show that the (1 + 1) EA using our operator finds a (1/3)-approximation within polynomial time. This performance matches that of combinatorial local search algorithms specifically designed to solve these problems and outperforms them with constant probability.A core operator of evolutionary algorithms (EAs) is the mutation. Recently, much attention has been devoted to the study of mutation operators with dynamic and non-uniform mutation rates. Following up on this area of work, we propose a new mutation operator and analyze its performance on the (1 + 1) Evolutionary Algorithm (EA). Our analyses show that this mutation operator competes with pre-existing ones, when used by the (1 + 1) EA on classes of problems for which results on the other mutation operators are available. We show that the (1 + 1) EA using our mutation operator finds a (1/3)-approximation ratio on any non-negative submodular function in polynomial time. We also consider the problem of maximizing a symmetric submodular function under a single matroid constraint and show that the (1 + 1) EA using our operator finds a (1/3)-approximation within polynomial time. This performance matches that of combinatorial local search algorithms specifically designed to solve these problems and outperforms them with constant probability. Finally, we evaluate the performance of the (1 + 1) EA using our operator experimentally by considering two applications: (a) the maximum directed cut problem on real-world graphs of different origins, with up to 6.6 million vertices and 56 million edges and (b) the symmetric mutual information problem using a four month period air pollution data set. In comparison with uniform mutation and a recently proposed dynamic scheme, our operator comes out on top on these instances.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Francesco QuinzanGND, Andreas GöbelORCiD, Markus WagnerORCiD, Tobias FriedrichORCiDGND
DOI:https://doi.org/10.1007/s11047-021-09841-7
ISSN:1572-9796
Titel des übergeordneten Werks (Englisch):Natural computing : an innovative journal bridging biosciences and computer sciences ; an international journal
Untertitel (Englisch):benefits of heavy-tailed mutations
Verlag:Springer Science + Business Media B.V.
Verlagsort:Dordrecht
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:16.02.2021
Erscheinungsjahr:2021
Datum der Freischaltung:13.07.2023
Freies Schlagwort / Tag:Evolutionary algorithms; Matroids; Mutation operators; Submodular functions
Band:20
Ausgabe:3
Seitenanzahl:15
Erste Seite:561
Letzte Seite:575
Fördernde Institution:ARC Discovery Early Career Researcher AwardAustralian Research Council [DE160100850]
Organisationseinheiten:An-Institute / Hasso-Plattner-Institut für Digital Engineering gGmbH
DDC-Klassifikation:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.