## Hasso-Plattner-Institut für Digital Engineering gGmbH

### Refine

#### Year of publication

#### Document Type

- Article (163)
- Monograph/Edited Volume (122)
- Doctoral Thesis (46)
- Other (30)
- Conference Proceeding (11)
- Preprint (4)
- Part of a Book (1)
- Postprint (1)
- Review (1)

#### Language

- English (337)
- German (40)
- Multiple languages (2)

#### Keywords

- Cloud Computing (9)
- cloud computing (8)
- Hasso-Plattner-Institut (7)
- Datenintegration (6)
- Forschungskolleg (6)
- Hasso Plattner Institute (6)
- Klausurtagung (6)
- Modellierung (6)
- Service-oriented Systems Engineering (6)
- Forschungsprojekte (5)

Multi-column dependencies in relational databases come associated with two different computational tasks. The detection problem is to decide whether a dependency of a certain type and size holds in a given database, the discovery problem asks to enumerate all valid dependencies of that type. We settle the complexity of both of these problems for unique column combinations (UCCs), functional dependencies (FDs), and inclusion dependencies (INDs). We show that the detection of UCCs and FDs is W[2]-complete when parameterized by the solution size. The discovery of inclusion-wise minimal UCCs is proven to be equivalent under parsimonious reductions to the transversal hypergraph problem of enumerating the minimal hitting sets of a hypergraph. The discovery of FDs is equivalent to the simultaneous enumeration of the hitting sets of multiple input hypergraphs. We further identify the detection of INDs as one of the first natural W[3]-complete problems. The discovery of maximal INDs is shown to be equivalent to enumerating the maximal satisfying assignments of antimonotone, 3-normalized Boolean formulas.

In order to achieve their business goals, organizations heavily rely on the operational excellence of their business processes. In traditional scenarios, business processes are usually well-structured, clearly specifying when and how certain tasks have to be executed. Flexible and knowledge-intensive processes are gathering momentum, where a knowledge worker drives the execution of a process case and determines the exact process path at runtime. In the case of an exception, the knowledge worker decides on an appropriate handling. While there is initial work on exception handling in well-structured business processes, exceptions in case management have not been sufficiently researched. This paper proposes an exception handling framework for stage-oriented case management languages, namely Guard Stage Milestone Model, Case Management Model and Notation, and Fragment-based Case Management. The effectiveness of the framework is evaluated with two real-world use cases showing that it covers all relevant exceptions and proposed handling strategies.

Effective query optimization is a core feature of any database management system. While most query optimization techniques make use of simple metadata, such as cardinalities and other basic statistics, other optimization techniques are based on more advanced metadata including data dependencies, such as functional, uniqueness, order, or inclusion dependencies. This survey provides an overview, intuitive descriptions, and classifications of query optimization and execution strategies that are enabled by data dependencies. We consider the most popular types of data dependencies and focus on optimization strategies that target the optimization of relational database queries. The survey supports database vendors to identify optimization opportunities as well as DBMS researchers to find related work and open research questions.

We consider the subset selection problem for function f with constraint bound B that changes over time. Within the area of submodular optimization, various greedy approaches are commonly used. For dynamic environments we observe that the adaptive variants of these greedy approaches are not able to maintain their approximation quality. Investigating the recently introduced POMC Pareto optimization approach, we show that this algorithm efficiently computes a phi=(alpha(f)/2)(1 - 1/e(alpha)f)-approximation, where alpha(f) is the submodularity ratio of f, for each possible constraint bound b <= B. Furthermore, we show that POMC is able to adapt its set of solutions quickly in the case that B increases. Our experimental investigations for the influence maximization in social networks show the advantage of POMC over generalized greedy algorithms. We also consider EAMC, a new evolutionary algorithm with polynomial expected time guarantee to maintain phi approximation ratio, and NSGA-II with two different population sizes as advanced multi-objective optimization algorithm, to demonstrate their challenges in optimizing the maximum coverage problem. Our empirical analysis shows that, within the same number of evaluations, POMC is able to perform as good as NSGA-II under linear constraint, while EAMC performs significantly worse than all considered algorithms in most cases.

An unceasing problem of our prevailing society is the fair division of goods. The problem of proportional cake cutting focuses on dividing a heterogeneous and divisible resource, the cake, among n players who value pieces according to their own measure function. The goal is to assign each player a not necessarily connected part of the cake that the player evaluates at least as much as her proportional share. <br /> In this article, we investigate the problem of proportional division with unequal shares, where each player is entitled to receive a predetermined portion of the cake. Our main contribution is threefold. First we present a protocol for integer demands, which delivers a proportional solution in fewer queries than all known protocols. By giving a matching lower bound, we then show that our protocol is asymptotically the fastest possible. Finally, we turn to irrational demands and solve the proportional cake cutting problem by reducing it to the same problem with integer demands only. All results remain valid in a highly general cake cutting model, which can be of independent interest.

We elaborate on the possibilities and needs to integrate design thinking into requirements engineering, drawing from our research and project experiences. We suggest three approaches for tailoring and integrating design thinking and requirements engineering with complementary synergies and point at open challenges for research and practice.

Recently, initial conflicts were introduced in the framework of M-adhesive categories as an important optimization of critical pairs. In particular, they represent a proper subset such that each conflict is represented in a minimal context by a unique initial one. The theory of critical pairs has been extended in the framework of M-adhesive categories to rules with nested application conditions (ACs), restricting the applicability of a rule and generalizing the well-known negative application conditions. A notion of initial conflicts for rules with ACs does not exist yet.
In this paper, on the one hand, we extend the theory of initial conflicts in the framework of M-adhesive categories to transformation rules with ACs. They represent a proper subset again of critical pairs for rules with ACs, and represent each conflict in a minimal context uniquely. They are moreover symbolic because we can show that in general no finite and complete set of conflicts for rules with ACs exists. On the other hand, we show that critical pairs are minimally M-complete, whereas initial conflicts are minimally complete. Finally, we introduce important special cases of rules with ACs for which we can obtain finite, minimally (M-)complete sets of conflicts.

Evaluating creativity of verbal responses or texts is a challenging task due to psychometric issues associated with subjective ratings and the peculiarities of textual data. We explore an approach to objectively assess the creativity of responses in a sentence generation task to 1) better understand what language-related aspects are valued by human raters and 2) further advance the developments toward automating creativity evaluations. Over the course of two prior studies, participants generated 989 four-word sentences based on a four-letter prompt with the instruction to be creative. We developed an algorithm that scores each sentence on eight different metrics including 1) general word infrequency, 2) word combination infrequency, 3) context-specific word uniqueness, 4) syntax uniqueness, 5) rhyme, 6) phonetic similarity, and similarity of 7) sequence spelling and 8) semantic meaning to the cue. The text metrics were then used to explain the averaged creativity ratings of eight human raters. We found six metrics to be significantly correlated with the human ratings, explaining a total of 16% of their variance. We conclude that the creative impression of sentences is partly driven by different aspects of novelty in word choice and syntax, as well as rhythm and sound, which are amenable to objective assessment.

While many optimization problems work with a fixed number of decision variables and thus a fixed-length representation of possible solutions, genetic programming (GP) works on variable-length representations. A naturally occurring problem is that of bloat, that is, the unnecessary growth of solution lengths, which may slow down the optimization process. So far, the mathematical runtime analysis could not deal well with bloat and required explicit assumptions limiting bloat.
In this paper, we provide the first mathematical runtime analysis of a GP algorithm that does not require any assumptions on the bloat. Previous performance guarantees were only proven conditionally for runs in which no strong bloat occurs. Together with improved analyses for the case with bloat restrictions our results show that such assumptions on the bloat are not necessary and that the algorithm is efficient without explicit bloat control mechanism.
More specifically, we analyzed the performance of the (1 + 1) GP on the two benchmark functions ORDER and MAJORITY. When using lexicographic parsimony pressure as bloat control, we show a tight runtime estimate of O(T-init + nlogn) iterations both for ORDER and MAJORITY. For the case without bloat control, the bounds O(T-init logT(i)(nit) + n(logn)(3)) and Omega(T-init + nlogn) (and Omega(T-init log T-init) for n = 1) hold for MAJORITY(1).

Bitcoin is gaining traction as an alternative store of value. Its market capitalization transcends all other cryptocurrencies in the market. But its high monetary value also makes it an attractive target to cyber criminal actors. Hacking campaigns usually target an ecosystem's weakest points. In Bitcoin, the exchange platforms are one of them. Each exchange breach is a threat not only to direct victims, but to the credibility of Bitcoin's entire ecosystem. Based on an extensive analysis of 36 breaches of Bitcoin exchanges, we show the attack patterns used to exploit Bitcoin exchange platforms using an industry standard for reporting intelligence on cyber security breaches. Based on this we are able to provide an overview of the most common attack vectors, showing that all except three hacks were possible due to relatively lax security. We show that while the security regimen of Bitcoin exchanges is subpar compared to other financial service providers, the use of stolen credentials, which does not require any hacking, is decreasing. We also show that the amount of BTC taken during a breach is decreasing, as well as the exchanges that terminate after being breached. Furthermore we show that overall security posture has improved, but still has major flaws. To discover adversarial methods post-breach, we have analyzed two cases of BTC laundering. Through this analysis we provide insight into how exchange platforms with lax cyber security even further increase the intermediary risk introduced by them into the Bitcoin ecosystem.