Hasso-Plattner-Institut für Digital Engineering gGmbH
Refine
Year of publication
Document Type
- Article (143)
- Monograph/Edited Volume (122)
- Doctoral Thesis (46)
- Other (31)
- Conference Proceeding (11)
- Preprint (4)
- Part of a Book (1)
- Postprint (1)
- Review (1)
Language
- English (318)
- German (40)
- Multiple languages (2)
Keywords
- Cloud Computing (9)
- cloud computing (8)
- Hasso-Plattner-Institut (7)
- Datenintegration (6)
- Forschungskolleg (6)
- Hasso Plattner Institute (6)
- Klausurtagung (6)
- Modellierung (6)
- Service-oriented Systems Engineering (6)
- Forschungsprojekte (5)
Introduction:
mobile phone technology is increasingly used to overcome traditional barriers to limiting access to diabetes care. This study evaluated mobile phone ownership and willingness to receive and pay for mobile phone-based diabetic services among people with diabetes in South-West, Nigeria.
Methods:
two hundred and fifty nine patients with diabetes were consecutively recruited from three tertiary health institutions in South-West, Nigeria. Questionnaire was used to evaluate mobile phone ownership, willingness to receive and pay for mobile phone-based diabetic health care services via voice call and text messaging.
Results:
97.3% owned a mobile phone, with 38.9% and 61.1% owning smartphone and basic phone respectively. Males were significantly more willing to receive mobile-phone-based health services than females (81.1% vs 68.1%, p=0.025), likewise married compared to unmarried [77.4% vs 57.1%, p=0.0361. Voice calls (41.3%) and text messages (32.4%), were the most preferred modes of receiving diabetes-related health education with social media (3.1%) and email (1.5%) least. Almost three-quarter of participants (72.6%) who owned mobile phone, were willing to receive mobile phone-based diabetes health services. The educational status of patients (adjusted OR [AORJ: 1.7(95% CI: 1.6 to 2.11), glucometers possession (ACM: 2.0 [95% CI: 1.9 to 2.1) and type of mobile phone owned (AOR: 2.9 [95% CI: 2.8 to 5.0]) were significantly associated with the willingness to receive mobile phone-based diabetic services.
Conclusion:
the majority of study participants owned mobile phones and would be willing to receive and pay for diabetes-related healthcare delivery services provided the cost is minimal and affordable.
Background:
There are limited data regarding the clinical impact of coronavirus disease 2019 (COVID-19) on people living with human immunodeficiency virus (PLWH). In this study, we compared outcomes for PLWH with COVID-19 to a matched comparison group.
Methods:
We identified 88 PLWH hospitalized with laboratory-confirmed COVID-19 in our hospital system in New York City between 12 March and 23 April 2020. We collected data on baseline clinical characteristics, laboratory values, HIV status, treatment, and outcomes from this group and matched comparators (1 PLWH to up to 5 patients by age, sex, race/ethnicity, and calendar week of infection). We compared clinical characteristics and outcomes (death, mechanical ventilation, hospital discharge) for these groups, as well as cumulative incidence of death by HIV status.
Results:
Patients did not differ significantly by HIV status by age, sex, or race/ethnicity due to the matching algorithm. PLWH hospitalized with COVID-19 had high proportions of HIV virologic control on antiretroviral therapy. PLWH had greater proportions of smoking (P < .001) and comorbid illness than uninfected comparators. There was no difference in COVID-19 severity on admission by HIV status (P = .15). Poor outcomes for hospitalized PLWH were frequent but similar to proportions in comparators; 18% required mechanical ventilation and 21% died during follow-up (compared with 23% and 20%, respectively). There was similar cumulative incidence of death over time by HIV status (P = .94).
Conclusions:
We found no differences in adverse outcomes associated with HIV infection for hospitalized COVID-19 patients compared with a demographically similar patient group.
Estimation-of-distribution algorithms (EDAs) are randomized search heuristics that create a probabilistic model of the solution space, which is updated iteratively, based on the quality of the solutions sampled according to the model. As previous works show, this iteration-based perspective can lead to erratic updates of the model, in particular, to bit-frequencies approaching a random boundary value. In order to overcome this problem, we propose a new EDA based on the classic compact genetic algorithm (cGA) that takes into account a longer history of samples and updates its model only with respect to information which it classifies as statistically significant. We prove that this significance-based cGA (sig-cGA) optimizes the commonly regarded benchmark functions OneMax (OM), LeadingOnes, and BinVal all in quasilinear time, a result shown for no other EDA or evolutionary algorithm so far. For the recently proposed stable compact genetic algorithm-an EDA that tries to prevent erratic model updates by imposing a bias to the uniformly distributed model-we prove that it optimizes OM only in a time exponential in its hypothetical population size. Similarly, we show that the convex search algorithm cannot optimize OM in polynomial time.
Mary, Hugo, and Hugo*
(2020)
Distributed data-parallel processing systems like MapReduce, Spark, and Flink are popular for analyzing large datasets using cluster resources. Resource management systems like YARN or Mesos in turn allow multiple data-parallel processing jobs to share cluster resources in temporary containers. Often, the containers do not isolate resource usage to achieve high degrees of overall resource utilization despite overprovisioning and the often fluctuating utilization of specific jobs. However, some combinations of jobs utilize resources better and interfere less with each other when running on the same shared nodes than others. This article presents an approach for improving the resource utilization and job throughput when scheduling recurring distributed data-parallel processing jobs in shared clusters. The approach is based on reinforcement learning and a measure of co-location goodness to have cluster schedulers learn over time which jobs are best executed together on shared resources. We evaluated this approach over the last years with three prototype schedulers that build on each other: Mary, Hugo, and Hugo*. For the evaluation we used exemplary Flink and Spark jobs from different application domains and clusters of commodity nodes managed by YARN. The results of these experiments show that our approach can increase resource utilization and job throughput significantly.
Cyber threat intelligence
(2021)
Unique column combinations (UCCs) are a fundamental concept in relational databases. They identify entities in the data and support various data management activities. Still, UCCs are usually not explicitly defined and need to be discovered. State-of-the-art data profiling algorithms are able to efficiently discover UCCs in moderately sized datasets, but they tend to fail on large and, in particular, on wide datasets due to run time and memory limitations. <br /> In this paper, we introduce HPIValid, a novel UCC discovery algorithm that implements a faster and more resource-saving search strategy. HPIValid models the metadata discovery as a hitting set enumeration problem in hypergraphs. In this way, it combines efficient discovery techniques from data profiling research with the most recent theoretical insights into enumeration algorithms. Our evaluation shows that HPIValid is not only orders of magnitude faster than related work, it also has a much smaller memory footprint.
Background:
Digital therapeutic care apps provide a new effective and scalable approach for people with nonspecific low back pain (LBP). Digital therapeutic care apps are also driven by personalized decision-support interventions that support the user in self-managing LBP, and may induce prolonged behavior change to reduce the frequency and intensity of pain episodes. However, these therapeutic apps are associated with high attrition rates, and the initial prescription cost is higher than that of face-to-face physiotherapy. In Germany, digital therapeutic care apps are now being reimbursed by statutory health insurance; however, price targets and cost-driving factors for the formation of the reimbursement rate remain unexplored.
Objective:
The aim of this study was to evaluate the cost-effectiveness of a digital therapeutic care app compared to treatment as usual (TAU) in Germany. We further aimed to explore under which circumstances the reimbursement rate could be modified to consider value-based pricing.
Methods:
We developed a state-transition Markov model based on a best-practice analysis of prior LBP-related decision-analytic models, and evaluated the cost utility of a digital therapeutic care app compared to TAU in Germany. Based on a 3-year time horizon, we simulated the incremental cost and quality-adjusted life years (QALYs) for people with nonacute LBP from the societal perspective. In the deterministic sensitivity and scenario analyses, we focused on diverging attrition rates and app cost to assess our model's robustness and conditions for changing the reimbursement rate. All costs are reported in Euro (euro1=US $1.12).
Results:
Our base case results indicated that the digital therapeutic care strategy led to an incremental cost of euro121.59, but also generated 0.0221 additional QALYs compared to the TAU strategy, with an estimated incremental cost-effectiveness ratio (ICER) of euro5486 per QALY. The sensitivity analysis revealed that the reimbursement rate and the capability of digital therapeutic care to prevent reoccurring LBP episodes have a significant impact on the ICER. At the same time, the other parameters remained unaffected and thus supported the robustness of our model. In the scenario analysis, the different model time horizons and attrition rates strongly influenced the economic outcome. Reducing the cost of the app to euro99 per 3 months or decreasing the app's attrition rate resulted in digital therapeutic care being significantly less costly with more generated QALYs, and is thus considered to be the dominant strategy over TAU.
Conclusions:
The current reimbursement rate for a digital therapeutic care app in the statutory health insurance can be considered a cost-effective measure compared to TAU. The app's attrition rate and effect on the patient's prolonged behavior change essentially influence the settlement of an appropriate reimbursement rate. Future value-based pricing targets should focus on additional outcome parameters besides pain intensity and functional disability by including attrition rates and the app's long-term effect on quality of life.
Affect-aware word clouds
(2020)
Word clouds are widely used for non-analytic purposes, such as introducing a topic to students, or creating a gift with personally meaningful text. Surveys show that users prefer tools that yield word clouds with a stronger emotional impact. Fonts and color palettes are powerful typographical signals that may determine this impact. Typically, these signals are assigned randomly, or expected to be chosen by the users. We present an affect-aware font and color palette selection methodology that aims to facilitate more informed choices. We infer associations of fonts with a set of eight affects, and evaluate the resulting data in a series of user studies both on individual words as well as in word clouds. Relying on a recent study to procure affective color palettes, we carry out a similar user study to understand the impact of color choices on word clouds. Our findings suggest that both fonts and color palettes are powerful tools contributing to the affects evoked by a word cloud. The experiments further confirm that the novel datasets we propose are successful in enabling this. We also find that, for the majority of the affects, both signals need to be congruent to create a stronger impact. Based on this data, we implement a prototype that allows users to specify a desired affect and recommends congruent fonts and color palettes for the word.
The Univariate Marginal Distribution Algorithm (UMDA) - a popular estimation-of-distribution algorithm - is studied from a run time perspective. On the classical OneMax benchmark function on bit strings of length n, a lower bound of Omega(lambda + mu root n + n logn), where mu and lambda are algorithm-specific parameters, on its expected run time is proved. This is the first direct lower bound on the run time of UMDA. It is stronger than the bounds that follow from general black-box complexity theory and is matched by the run time of many evolutionary algorithms. The results are obtained through advanced analyses of the stochastic change of the frequencies of bit values maintained by the algorithm, including carefully designed potential functions. These techniques may prove useful in advancing the field of run time analysis for estimation-of-distribution algorithms in general.
Technology pivots were designed to help digital startups make adjustments to the technology underpinning their products and services. While academia and the media make liberal use of the term "technology pivot," they rarely align themselves to Ries' foundational conceptualization. Recent research suggests that a more granulated conceptualization of technology pivots is required. To scientifically derive a comprehensive conceptualization, we conduct a Delphi study with a panel of 38 experts drawn from academia and practice to explore their understanding of "technology pivots." Our study thus makes an important contribution to advance the seminal work by Ries on technology pivots.