Integrating nonlinear mixed effects and physiologically–based modeling approaches for the analysis of repeated measurement studies

Integration nicht-linearer gemischter Modelle und physiologie-basierte Modellierung Ansätze in die Auswertung longitudinaler Studien

  • During the drug discovery & development process, several phases encompassing a number of preclinical and clinical studies have to be successfully passed to demonstrate safety and efficacy of a new drug candidate. As part of these studies, the characterization of the drug's pharmacokinetics (PK) is an important aspect, since the PK is assumed to strongly impact safety and efficacy. To this end, drug concentrations are measured repeatedly over time in a study population. The objectives of such studies are to describe the typical PK time-course and the associated variability between subjects. Furthermore, underlying sources significantly contributing to this variability, e.g. the use of comedication, should be identified. The most commonly used statistical framework to analyse repeated measurement data is the nonlinear mixed effect (NLME) approach. At the same time, ample knowledge about the drug's properties already exists and has been accumulating during the discovery & development process: Before any drug is tested in humans, detailedDuring the drug discovery & development process, several phases encompassing a number of preclinical and clinical studies have to be successfully passed to demonstrate safety and efficacy of a new drug candidate. As part of these studies, the characterization of the drug's pharmacokinetics (PK) is an important aspect, since the PK is assumed to strongly impact safety and efficacy. To this end, drug concentrations are measured repeatedly over time in a study population. The objectives of such studies are to describe the typical PK time-course and the associated variability between subjects. Furthermore, underlying sources significantly contributing to this variability, e.g. the use of comedication, should be identified. The most commonly used statistical framework to analyse repeated measurement data is the nonlinear mixed effect (NLME) approach. At the same time, ample knowledge about the drug's properties already exists and has been accumulating during the discovery & development process: Before any drug is tested in humans, detailed knowledge about the PK in different animal species has to be collected. This drug-specific knowledge and general knowledge about the species' physiology is exploited in mechanistic physiological based PK (PBPK) modeling approaches -it is, however, ignored in the classical NLME modeling approach. Mechanistic physiological based models aim to incorporate relevant and known physiological processes which contribute to the overlying process of interest. In comparison to data--driven models they are usually more complex from a mathematical perspective. For example, in many situations, the number of model parameters outrange the number of measurements and thus reliable parameter estimation becomes more complex and partly impossible. As a consequence, the integration of powerful mathematical estimation approaches like the NLME modeling approach -which is widely used in data-driven modeling -and the mechanistic modeling approach is not well established; the observed data is rather used as a confirming instead of a model informing and building input. Another aggravating circumstance of an integrated approach is the inaccessibility to the details of the NLME methodology so that these approaches can be adapted to the specifics and needs of mechanistic modeling. Despite the fact that the NLME modeling approach exists for several decades, details of the mathematical methodology is scattered around a wide range of literature and a comprehensive, rigorous derivation is lacking. Available literature usually only covers selected parts of the mathematical methodology. Sometimes, important steps are not described or are only heuristically motivated, e.g. the iterative algorithm to finally determine the parameter estimates. Thus, in the present thesis the mathematical methodology of NLME modeling is systemically described and complemented to a comprehensive description, comprising the common theme from ideas and motivation to the final parameter estimation. Therein, new insights for the interpretation of different approximation methods used in the context of the NLME modeling approach are given and illustrated; furthermore, similarities and differences between them are outlined. Based on these findings, an expectation-maximization (EM) algorithm to determine estimates of a NLME model is described. Using the EM algorithm and the lumping methodology by Pilari2010, a new approach on how PBPK and NLME modeling can be combined is presented and exemplified for the antibiotic levofloxacin. Therein, the lumping identifies which processes are informed by the available data and the respective model reduction improves the robustness in parameter estimation. Furthermore, it is shown how apriori known factors influencing the variability and apriori known unexplained variability is incorporated to further mechanistically drive the model development. Concludingly, correlation between parameters and between covariates is automatically accounted for due to the mechanistic derivation of the lumping and the covariate relationships. A useful feature of PBPK models compared to classical data-driven PK models is in the possibility to predict drug concentration within all organs and tissue in the body. Thus, the resulting PBPK model for levofloxacin is used to predict drug concentrations and their variability within soft tissues which are the site of action for levofloxacin. These predictions are compared with data of muscle and adipose tissue obtained by microdialysis, which is an invasive technique to measure a proportion of drug in the tissue, allowing to approximate the concentrations in the interstitial fluid of tissues. Because, so far, comparing human in vivo tissue PK and PBPK predictions are not established, a new conceptual framework is derived. The comparison of PBPK model predictions and microdialysis measurements shows an adequate agreement and reveals further strengths of the presented new approach. We demonstrated how mechanistic PBPK models, which are usually developed in the early stage of drug development, can be used as basis for model building in the analysis of later stages, i.e. in clinical studies. As a consequence, the extensively collected and accumulated knowledge about species and drug are utilized and updated with specific volunteer or patient data. The NLME approach combined with mechanistic modeling reveals new insights for the mechanistic model, for example identification and quantification of variability in mechanistic processes. This represents a further contribution to the learn & confirm paradigm across different stages of drug development. Finally, the applicability of mechanism--driven model development is demonstrated on an example from the field of Quantitative Psycholinguistics to analyse repeated eye movement data. Our approach gives new insight into the interpretation of these experiments and the processes behind.show moreshow less
  • Für die Erforschung und Entwicklung eines neuen Arzneistoffes wird die sichere und wirksame Anwendung in präklinischen und klinischen Studien systematisch untersucht. Ein wichtiger Bestandteil dieser Studien ist die Bestimmung der Pharmakokinetik (PK), da über diese das Wirkungs- und Nebenwirkungsprofil maßgeblich mitbestimmt wird. Um die PK zu bestimmen wird in der Studienpopulation die Wirkstoffkonzentration im Blut wiederholt über die Zeit gemessen. Damit kann sowohl der Konzentrations-Zeit-Verlauf als auch die dazugehörige Variabilität in der Studienpopulation bestimmt werden. Darüber hinaus ist ein weiteres Ziel, die Ursachen dieser Variabilität zu identifizieren. Fär die Auswertung der Daten werden nichtlineare, gemischte Effektmodelle (NLME) eingesetzt. Im Vorfeld der klinischen Studien sind bereits viele Eigenschaften des Wirkstoffes bekannt, da der Wirkstoff-Testung am Menschen die Bestimmung der PK an verschiedenen Tierspezies voraus geht. Auf Basis dieser wirkstoffspezifischen Daten und des Wissens um dieFür die Erforschung und Entwicklung eines neuen Arzneistoffes wird die sichere und wirksame Anwendung in präklinischen und klinischen Studien systematisch untersucht. Ein wichtiger Bestandteil dieser Studien ist die Bestimmung der Pharmakokinetik (PK), da über diese das Wirkungs- und Nebenwirkungsprofil maßgeblich mitbestimmt wird. Um die PK zu bestimmen wird in der Studienpopulation die Wirkstoffkonzentration im Blut wiederholt über die Zeit gemessen. Damit kann sowohl der Konzentrations-Zeit-Verlauf als auch die dazugehörige Variabilität in der Studienpopulation bestimmt werden. Darüber hinaus ist ein weiteres Ziel, die Ursachen dieser Variabilität zu identifizieren. Fär die Auswertung der Daten werden nichtlineare, gemischte Effektmodelle (NLME) eingesetzt. Im Vorfeld der klinischen Studien sind bereits viele Eigenschaften des Wirkstoffes bekannt, da der Wirkstoff-Testung am Menschen die Bestimmung der PK an verschiedenen Tierspezies voraus geht. Auf Basis dieser wirkstoffspezifischen Daten und des Wissens um die spezifische humane Physiologie können mittels mechanistisch physiologiebasierter Modelle Vorhersagen für die humane PK getroffen werden. Bei der Analyse von PK Daten mittels NLME Modellen wird dieses vorhandene Wissen jedoch nicht verwertet. In physiologiebasierten Modellen werden physiologische Prozesse, die die PK bestimmen und beeinflussen können, ber+cksichtigt. Aus mathematischer Sicht sind solche mechanistischen Modelle im Allgemeinen deutlich komplexer als empirisch motivierte Modelle. In der Anwendung kommt es deswegen häufig zu Situationen, in denen die Anzahl der Modellparameter die Anzahl der zugrunde liegenden Beobachtungen übertrifft. Daraus folgt unter anderem, dass die Parameterschätzung, wie sie in empirisch motivierten Modellen genutzt wird, in der Regel unzuverlässig bzw. nicht möglich ist. In Folge dessen werden klinische Daten in der mechanistischen Modellierung meist nur zur Modellqualifizierung genutzt und nicht in die Modell(weiter)entwicklung integriert. Ein weiterer erschwerender Umstand, NLME und PBPK Modelle in der Anwendung zu kombinieren, beruht auch auf der Komplexität des NLME Ansatzes. Obwohl diese Methode seit Jahrzehnten existiert, sind in der Literatur nur ausgewählte Teilstücke der zugrunde liegenden Mathematik beschrieben und hergeleitet; eine lückenlose Beschreibung fehlt. Aus diesem Grund werden in der vorliegenden Arbeit systematisch die Methodik und mathematischen Zusammenhänge des NLME Ansatzes, von der ursprüngliche Idee und Motivation bis zur Parameterschätzung beschrieben. In diesem Kontext werden neue Interpretationen der unterschiedlichen Methoden, die im Rahmen der NLME Modellierung verwendet werden, vorgestellt; zudem werden Gemeinsamkeiten und Unterschiede zwischen diesen herausgearbeitet. Mittels dieser Erkenntnisse wird ein Expectation-Maximization (EM) Algorithmus zur Parameterschätzung in einer NLME Analyse beschrieben. Mittels des neuen EM Algorithmus, kombiniert mit dem Lumping-Ansatz von Pilari und Huisinga (S. Pilari, W. Huisinga, JPKPD Vol. 37(4), 2010.) wird anhand des Antibiotikums Levofloxacin ein neuer konzeptioneller Ansatz entwickelt, der PBPK- und NLME-Modellierung zur Datenanalyse integriert. Die Lumping-Methode definiert hierbei, welche Prozesse von den verfügbaren Daten informiert werden, sie verbessert somit die Robustheit der Parameterschätzung. Weiterhin wird gezeigt, wie a-priori Wissen über Variabilität und Faktoren, die diese beeinflussen, sowie unerklärte Variabilität in das Modell integriert werden können. Ein elementarer Vorteil von PBPK Modellen gegenüber empirisch motivieren PK Modellen besteht in der Möglichkeit, Wirkstoffkonzentrationen innerhalb von Organen und Gewebe im Körper vorherzusagen. So kann das PBPK-Modell für Levofloxacin genutzt werden, um Wirkstoffkonzentrationen innerhalb der Gewebe vorherzusagen, in denen typischerweise Infektionen auftreten. Für Muskel- und Fettgewebe werden die PBPK-Vorhersagen mit Mikrodialyse Gewebemessungen verglichen. Die gute übereinstimmung von PBPK-Modell und Mikrodialyse stellt eine noch nicht vorhanden Validierung des PBPK-Gewebemodells im Menschen dar. In dieser Dissertation wird gezeigt, wie mechanistische PBPK Modelle, die in der Regel in der frühen Phase der Arzneimittelentwicklung entwickelt werden, erfolgreich zur Analyse von klinischen Studien eingesetzt werden können. Das bestehende Wissen über den neuen Wirkstoff wird somit gezielt genutzt und mit klinischen Daten von Probanden oder Patienten aktualisiert. Im Fall von Levofloxacin konnte Variabilität in mechanistischen Prozessen identifiziert und quantifiziert werden. Dieses Vorgehen liefert einen weiteren Beitrag zum learn & confirm Paradigma im Forschungs- und Entwicklungsprozess eines neuen Wirkstoffes. Abschließend wird anhand eines weiteren real world-Beispieles aus dem Bereich der quantitativen Psycholinguistik die Anwendbarkeit und der Nutzen des vorgestellten integrierten Ansatz aus mechanistischer und NLME Modellierung in der Analyse von Blickbewegungsdaten gezeigt. Mittels eines mechanistisch motivierten Modells wird die Komplexität des Experimentes und der Daten abgebildet, wodurch sich neue Interpretationsmöglichkeiten ergeben.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Alexander Maximilian SolmsORCiDGND
URN:urn:nbn:de:kobv:517-opus4-397070
Subtitle (English):with applications in quantitative pharmacology and quantitative psycholinguistics
Advisor:Wilhelm Huisinga
Document Type:Doctoral Thesis
Language:English
Year of Completion:2017
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2017/05/17
Release Date:2017/07/06
Tag:EM; Lumping; Microdialyse; Populations Analyse; mechanistische Modellierung; nicht-lineare gemischte Modelle (NLME); physiologie-basierte Pharmacokinetic (PBPK); popPBPK; popPK
EM; NLME; PBPK; lumping; mechanistic modeling; microdialysis; popPBPK; popPK; population analysis
Pagenumber:x, 141
RVK - Regensburg Classification:SK 950, WC 7000
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:62-XX STATISTICS
92-XX BIOLOGY AND OTHER NATURAL SCIENCES
JEL Classification:C Mathematical and Quantitative Methods
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht