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Abstract

During the drug discovery & development process, several phases encompassing a number
of preclinical and clinical studies have to be successfully passed to demonstrate safety and
efficacy of a new drug candidate. As part of these studies, the characterization of the
drug’s pharmacokinetics (PK) is an important aspect, since the PK is assumed to strongly
impact safety and efficacy. To this end, drug concentrations are measured repeatedly over
time in a study population. The objectives of such studies are to describe the typical
PK time-course and the associated variability between subjects. Furthermore, underlying
sources significantly contributing to this variability, e.g. the use of comedication, should be
identified. The most commonly used statistical framework to analyse repeated measurement
data is the nonlinear mixed effect (NLME) approach. At the same time, ample knowledge
about the drug’s properties already exists and has been accumulating during the discovery
& development process: Before any drug is tested in humans, detailed knowledge about the
PK in different animal species has to be collected. This drug-specific knowledge and general
knowledge about the species’ physiology is exploited in mechanistic physiological based PK
(PBPK) modeling approaches —it is, however, ignored in the classical NLME modeling
approach.

Mechanistic physiological based models aim to incorporate relevant and known phys-
iological processes which contribute to the overlying process of interest. In comparison
to data–driven models they are usually more complex from a mathematical perspective.
For example, in many situations, the number of model parameters outrange the number of
measurements and thus reliable parameter estimation becomes more complex and partly im-
possible. As a consequence, the integration of powerful mathematical estimation approaches
like the NLME modeling approach—which is widely used in data-driven modeling—and the
mechanistic modeling approach is not well established; the observed data is rather used as
a confirming instead of a model informing and building input.

Another aggravating circumstance of an integrated approach is the inaccessibility to the
details of the NLME methodology so that these approaches can be adapted to the specifics
and needs of mechanistic modeling. Despite the fact that the NLME modeling approach
exists for several decades, details of the mathematical methodology is scattered around
a wide range of literature and a comprehensive, rigorous derivation is lacking. Available
literature usually only covers selected parts of the mathematical methodology. Sometimes,
important steps are not described or are only heuristically motivated, e.g. the iterative
algorithm to finally determine the parameter estimates.

Thus, in the present thesis the mathematical methodology of NLME modeling is system-
ically described and complemented to a comprehensive description, comprising the common
theme from ideas and motivation to the final parameter estimation. Therein, new insights for
the interpretation of different approximation methods used in the context of the NLME mod-
eling approach are given and illustrated; furthermore, similarities and differences between
them are outlined. Based on these findings, an expectation-maximization (EM) algorithm
to determine estimates of a NLME model is described.

Using the EM algorithm and the lumping methodology by Pilari and Huisinga [2010], a
new approach on how PBPK and NLME modeling can be combined is presented and ex-
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emplified for the antibiotic levofloxacin. Therein, the lumping identifies which processes are
informed by the available data and the respective model reduction improves the robustness
in parameter estimation. Furthermore, it is shown how apriori known factors influencing
the variability and apriori known unexplained variability is incorporated to further mecha-
nistically drive the model development. Concludingly, correlation between parameters and
between covariates is automatically accounted for due to the mechanistic derivation of the
lumping and the covariate relationships.

A useful feature of PBPK models compared to classical data-driven PK models is in the
possibility to predict drug concentration within all organs and tissue in the body. Thus,
the resulting PBPK model for levofloxacin is used to predict drug concentrations and their
variability within soft tissues which are the site of action for levofloxacin. These predictions
are compared with data of muscle and adipose tissue obtained by microdialysis, which is an
invasive technique to measure a proportion of drug in the tissue, allowing to approximate
the concentrations in the interstitial fluid of tissues. Because, so far, comparing human in
vivo tissue PK and PBPK predictions are not established, a new conceptual framework is
derived. The comparison of PBPK model predictions and microdialysis measurements shows
an adequate agreement and reveals further strengths of the presented new approach.

We demonstrated how mechanistic PBPK models, which are usually developed in the
early stage of drug development, can be used as basis for model building in the analysis of
later stages, i.e. in clinical studies. As a consequence, the extensively collected and accu-
mulated knowledge about species and drug are utilized and updated with specific volunteer
or patient data. The NLME approach combined with mechanistic modeling reveals new
insights for the mechanistic model, for example identification and quantification of variabil-
ity in mechanistic processes. This represents a further contribution to the learn & confirm
paradigm across different stages of drug development.

Finally, the applicability of mechanism–driven model development is demonstrated on an
example from the field of Quantitative Psycholinguistics to analyse repeated eye movement
data. Our approach gives new insight into the interpretation of these experiments and the
processes behind.
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1. Introduction

An essential objective of clinical pharmacology studies is to characterize the pharmacokinet-
ics (PK) of the drug of interest—i.e. the drug concentration time profile within the body—in
the respective patient population. The PK are of interest because it is assumed that they
are closely linked to the drug effects, the so–called pharmacodynamics (PD) of the drug. To
study the PK, the drug is administered and the drug concentration is measured repeatedly
over time, usually in plasma, in several patients. These type of observations are denoted
as repeated measurement data—or in case of PK as population PK data. Based on these
repeated measurement data, the typical profile as well as the variability of the concentra-
tion time course within the patient population are characterized. The variability between
patients, denoted as between subject variability (BSV), is important to finally define a dose
which ensures that all patients are treated efficaciously.

For example, for antibiotics it is important that the drug levels at the site of infection,
e.g. lung or soft tissue, are sufficient to successfully kill bacteria and avoid emergence of
resistance. However, these concentrations are difficult to measure directly in patients. Since
measuring plasma concentrations is a well–established process and can be included in daily
clinical routine, one approach is to take the plasma concentrations as surrogate for the drug
concentrations at the target. However, the predictability of this surrogate is usually not
known and under debate, e.g. see Müller et al. [2004].

An alternative is given by the invasive microdialysis approach, where a proportion of the
local drug concentration is measured and extrapolated to the concentration within the tissue
space of interest. This approach requires significantly more effort on the patient site, as well
as on the site of the physician or study nurse conducting the measurements. Thus, it is not
suitable to be conducted in larger clinical studies or during daily clinical routine. Addition-
ally, the relationship between measured local drug concentrations and tissue concentration
has to be determined. This determination itself is rather complex and potentially associ-
ated with relatively large uncertainty. Due to the complexity of this approach, microdialysis
studies usually only include small number of patients. As a consequence, the BSV in the
patient population as well as the average local concentration can only be determined with a
relatively large uncertainty.

Another alternative to predict the tissue concentrations is given by the in silico
physiologically–based pharmacokinetics (PBPK) modeling approach. This method combines
prior knowledge about the physiology and the tissue compositions of the species with the
physicochemical properties of the drug. In general, a PBPK model is based on in vitro
experiments and preclinical in vivo data. However, in the PBPK modeling approach it is
unclear how population PK data can be used to inform and optimize the PBPK model and
how BSV can be incorporated.

In summary, with all three approaches similar issues can be addressed with different
strengths and limitations. Interestingly, they nicely complement each other in some aspects:
for example, while repeated measurement plasma PK data is very efficient for characterizing
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1. Introduction

BSV of the PK, its use for predicting tissue concentrations is limited, on the other hand
the tissue predictions determined by the microdialysis approach are affected with relatively
large uncertainty and due to the small study size the characterization of BSV is difficult, in
theory the PBPK modeling approach can be used to predict tissue concentrations, but the
respective predictions are rarely verified with clinical data, moreover, it is still a matter of
debate how BSV can be incorporated and in which magnitude.

For the antibiotic levofloxacin four studies were conducted by Prof. Markus Zeitlinger
from the Medical University of Vienna, Austria, where levofloxacin PK profiles were densely
measured in 24 subjects in plasma, muscle and adipose interstitial space fluid (ISF), the
latter two were obtained by microdialysis (Zeitlinger et al. [2003, 2007]; Bellmann et al.
[2004]).

Based on these studies, our idea was to combine the PK data obtained in plasma and ISF
and PBPK modeling into an integrative analysis to predict the target concentrations and
the respective BSV. Thereby, the strategy was to use literature information about human
physiology and the repeated measurement data obtained in plasma to build a mechanistic
population PBPK model, including known sources of BSV and estimate the unexplained
magnitude of BSV. In a next step, the link between the in silico predicted tissue concentra-
tions and the in vivo microdialysis measurements should be examined for the comparison
of both approaches.

Population PBPK modeling
Typically, population PK data is analyzed using nonlinear mixed effects (NLME) modeling.
A NLME model consists of three main building blocks. One part, the structural model, is
a mathematical function describing the relationship between the dependent variables—i.e.
the measurements, and the independent variables—e.g. in PK in particular time and dose.
The structural model is parametrized with so–called fixed and random effects. The fixed
effects parameters are assumed to be constant over the whole population, while the random
effects parameters are random variables describing the variations between the subjects of
the study population. Thus, fixed effects relate to the typical profile, while random effects
describe the variability within the population. The second block consists of the choice
of the random effects and their stochastic distribution denoted as BSV model. Often a
covariate model describing the relationship between covariates and fixed effects parameter
is included with the objective to explain parts of the observed BSV and thereby reduce the
unexplained BSV. The term nonlinear in NLME arises from the fact that the structural
model is a nonlinear function w.r.t. the random effects parameters. The third block of a
NLME model is the stochastic model which describes the link between the structural model
and the measurements, often called residual error model or within subject variability (WSV)
model. If the underlying data is sufficient and no distributional assumption regarding the
random effects can be made, so–called non–parametric methods can be applied. In practice
these approaches are rarely used, particularly in life sciences the assumption of normally
or log–normally distributed parameter within a population are well accepted, see Karlsson
et al. [1998]; Limpert et al. [2001].

In the analysis of population PK data usually an empirically motivated classical compart-
mental model is chosen as structural model. Classical compartmental models are described
by a small system of (one to four) ordinary differential equations (ODEs), parametrized by
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a small set of parameters. For example, Fish and Chow [1997] reported that the PK of lev-
ofloxacin were best described by a two compartment system (i.e. two ODEs) parametrized
by four parameters. The more complex PBPK models are as well described by a system
of ODEs which are parametrized by a large set of parameters, typically ≥ 200 parameters.
Only a small part of these parameters are drug related and usually assumed to be constant
in the population. The majority are related to physiology, e.g. body composition and re-
gional blood flows. These physiological parameters are expected to vary between patients,
but details of the respective BSV are rarely known.

Tsamandouras et al. [2013] discuss parameter estimation in the context of PBPK mod-
eling in general. They conclude that a full PBPK model is over-parametrized and classical
estimation methods are not practicable. To deal with this issue, their suggestion is to use
Bayesian methods or model reduction techniques. Likewise, Leil [2014] discuss the challenges
with available approaches to characterize variability and uncertainty in a PBPK context.
He states that combining NLME modeling and mechanism–based modeling is inapplicable
due to the complexity of mechanistic models and the associated number of parameters. He
also proposes to use a Bayesian approach to deal with this issue.

At the same time, first attempts combining Bayesian methods and population PBPK
modeling have already been made by Krauss et al. [2013, 2015] and Tsamandouras et al.
[2015]. All authors report similar challenges: difficulties of defining prior distributions,
potential correlation between parameters and computational effort to derive the posterior
distribution—which corresponds to the estimation/fitting results in a Baysian context. Us-
ing a Bayesian approach requires that for all parameters of interest—including as well the
parameters describing the BSV—prior distributions have to be chosen and defined. For
example, Krauss et al. [2015] developed a population PBPK model for theophylline based
on PK data of 12 subjects and estimated posterior distributions for a subset of 41 param-
eters, 38 of them modeled with a random effect. This resulted in a computation time of
approximately 76 days—even with the use of parallel computing.

Unsurprisingly, it is a huge challenge to find appropriate prior information, particularly,
stochastic properties of these information for many parameters. As a consequence, partly,
information for prior distributions is missing or incomplete and simplifying assumptions
have to be made. For example, Tsamandouras et al. [2015] conducted a population PBPK
analysis using a Bayesian approach and stated that prior information about BSV was not
available. Moreover, they had to fix some model parameters to reduce the dimensionality
of the estimation, in particular for parameters with large uncertainty w.r.t. to the prior
knowledge. In addition, their results show that only for few parameters the estimated
parameter values—defined as mode of the posterior distribution, differs to the mode of the
prior distribution—which can be interpreted as initial value. This indicates that either the
prior information was very precise or—more likely—that these parameter were not informed
by the available data.

In conclusion, because of the large number of parameters, the complexity of the physi-
ological processes within a PBPK model and because in general PK data is not sufficient
to inform all physiological processes, non–Bayesian frequentist NLME modeling are rarely
combined with mechanistic PBPK modeling in the analysis of PK data. However, because
prior distributions for physiological and physicochemical parameter of the drugs are rarely
known and due to the computational effort, Bayesian approaches are very challenging and
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1. Introduction

rarely applied neither.
An alternative is to focus only on the most relevant parameters and on those which

can be informed by the available data. Identifying these can for example be done using a
lumping approach. This approach lumps tissues and organs with similar kinetics together
and thereby reduces the PBPK model dimensions. Following the approach by Pilari and
Huisinga [2010], the parameters of the lumped model are composed of the original PBPK
model parameters, i.e. the extensive prior knowledge about physiology and drug, as well
as included covariate effects can still be integrated and used. Because physiological and
physicochemical parameter can affect several of the lumped parameters in intricate ways, the
composition of the lumped parameter is rather complex. Concludingly, correlation between
parameters and between covariates is automatically accounted for due to the mechanistic
derivation of the lumping and the covariate relationships.

The challenge is to develop an approach where lumped PBPK and NLME modeling are
integrated for the analysis of the population PK data. Such an approach could be applied to
inform and optimize the PBPK model, i.e. to adjust relevant parameters, estimate missing
parameters and quantify the unexplained BSV and WSV.

The NLME approach
Several NLME modeling software tools tailored for the analysis of pharmacological data are
available, e.g. NONMEM, Phoenix NLME and Monolix. These tools are very powerful for
the analysis of population PK data combined with classical compartmental analysis. How-
ever, the lumped PBPK model cannot easily be represented as simple compartmental model
with classical apparent PK parameters. Using th lumping the PBPK model parameter are
dynamically transformed into the apparent PK parameter on the basis of a physiological
database and a set of convoluted functions, e.g. functions predicting distribution proper-
ties of each tissue. Not all NLME software tools allow such flexibility or at least not with
reasonable expense. For the implementation of a PBPK model and the lumping approach,
mathematical software like Matlab or R offer an optimal environment. For both software
packages NLME estimation methods are available. For rather standard problems the re-
spective developers have demonstrated that the estimation performs reliably. However, for
non–standard problems these functions do not work satisfyingly. For example, Girard and
Mentre [2005] and Plan et al. [2012] compared different algorithms and showed that R–nlme
performed worst in terms of successful convergence and bias in the parameter estimates.

Therefore, we implemented a robust NLME estimation algorithm such that the proposed
mechanistic NLMEmodeling approach can be applied independently of pure PBPKmodeling
software, such as PK–Sim or Simcyp Simulator and NLME software tools.

To analyze repeated measurement studies using NLME modeling the maximum likelihood
(ML) principle is typically applied. Due to the nonlinearity of the structural model w.r.t.
the random effects, for NLME there usually does not exist a closed-form expression of
the likelihood function and algorithms based on deterministic/analytical approximations or
stochastic approaches have to be used to determine the ML estimates.

Several authors investigated the pros and cons of the different approaches, e.g. see Liu
and Wang [2016]; Bauer et al. [2007]; Gibiansky et al. [2012]; Plan et al. [2012]. The similar
conclusion of all authors is that stochastic algorithms work better for complex model, and/or
sparse data situations, while for simple structured model and dense data the deterministic
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approaches are usually faster and perform sufficiently well.

Typically, mechanistic PK modeling is applied in the analysis of rather small studies with
dense sampling for all subjects, e.g. preclinical studies or clinical phase I studies dedicated to
investigate PK and/or interactions with comedication or food. The lumping determines the
relationship between PBPK model parameters and apparent PK parameters. Thus, even if
this relationship might be rather complex, the lumped model itself is given by a classical
compartmental model. Therefore, in view of the designated application—the levofloxacin
dataset consists of a small population with dense PK sampling, we used an estimation
method based on a deterministic approximation approach.

Howsoever, the hereafter presented mechanism-driven modeling approach is independent
of the choice of the NLME software and estimation algorithm. In particular, in case mecha-
nistic modeling is applied on sparse data or the applied NLME model is rather complex, e.g.
in terms of random effects or structural model, stochastic approximations method should be
considered as an alternative.

The first deterministic NLME estimation methods in PK were introduced in a series of
publications Sheiner and Beal [1980, 1981, 1983]; Sheiner [1984]; Beal and Sheiner [1982].
Thereby, the derivation delivered by Sheiner and Beal is rather heuristically motivated than
mathematically founded. About 25 years later, Wang [2007] provided a mathematical deriva-
tion of these approximation methods. However, Wang [2007] only derived the approxima-
tions in case of an univariate random variable. Furthermore, not all details in the derivation
are adequately justified.

Concludingly, in Part I, the most commonly applied deterministic methods in the anal-
ysis of population PK data are introduced and the mathematical methodology of NLME
modeling is systemically and comprehensively described. In addition, a new and clear in-
terpretation of these methods is presented, which appears to be useful to illustrate the
corresponding similarities and dissimilarities. To finally use these approximation in the con-
text of parameter estimation, iterative algorithms have to be applied. A popular alternative
to these approaches is given by the expectation-maximization (EM) algorithm, because the
computation of the likelihood function as mentioned above is avoided.

The available EM algorithms can be separated into either based on deterministic or
stochastic approximations, such as the stochastic approximation expectation–maximization
(SAEM) algorithm Kuhn and Lavielle [2005]. The EM algorithm consists of the expectation
’E’ step followed by the maximization ’M’ step, which are iterated until convergence is
reached. In context of NLME modeling, the available EM algorithms, both deterministic
and stochastic, are usually based on a similar M–step, while the main difference is the E–
step. Following Walker [1996]; Mentre and Gomeni [1995] we will describe a deterministic
EM algorithm. Furthermore, the description of the M–step by Walker [1996]; Mentre and
Gomeni [1995] is complemented by the details how fixed effects which are not associated
with random effects can be estimated.

Finally, the presented deterministic EM algorithm is evaluated in a simulation & estima-
tion study using a classical compartmental PK model and compared to the SAEM algorithm
implemented in the R–package saemix (Comets et al. [2011]). For the underlying situation,
this comparison demonstrates that the deterministic estimation approach performs suffi-
ciently well. The details can be found in the Section 3.3.9.
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1. Introduction

Population PBPK modeling of levofloxacin
In Chapter 5, using the deterministic EM algorithm, we demonstrate how mechanistical
PBPK modeling and the lumping methodology by Pilari and Huisinga [2010] can be com-
bined to analyze population PK data and illustrate this for the drug levofloxacin.

To this aim, a PBPK model as described by Pilari and Huisinga [2010] and the tissue-
distribution model introduced by Rodgers et al. [2005b] is used. The model parameters
for the human physiology and physicochemical properties of levofloxacin are extracted from
different literature sources. In a next step, we developed a new approach to include known
physiological-based sources of BSV into the PBPK model by individualizing the physiological
information within the PBPK model based on patient’s covariates. The essentials of this
new approach was published in Huisinga et al. [2012]. The new approach—a linear scaling of
the organ size with lean body weight—most appropriately reproduces the observed BSV in
organ size compared to other existing approaches. Additionally, in Huisinga et al. [2012] we
demonstrated how the BSV in apparent PK parameters of classical compartmental models is
expected to be affected by patient’s body size. The successful quantification of such covariate
effects based on population PK analysis is often very challenging because the effect size is
relatively weak compared to the variability which is usually present in the data. On top
of this individualization, due the importance of the cardiac output parameter for the drug
distribution, a literature–based uncertainty is used to refine the individual cardiac output
parameter in the NLME estimation.

In a last step, to examine the link between tissue concentration predicted by PBPK
modeling and measurements obtained by microdialysis, the details of the experimental set-
ting of the microdialysis method are reproduced and considered in the model. Therefore,
it has to be considered that in the microdialysis experiment the drug concentration is col-
lected over predefined time periods and not measured at specific time points as plasma
PKs. Moreover, the experimentally determined correction factor and, importantly the as-
sociated uncertainty are incorporated into this assessment. On the other hand, because the
microdialysis measurement are taken from the ISF—belonging to the vascular space of the
tissue—the corresponding concentration within the PBPK model has to be determined.

The simulations of the microdialysis measurements shows that the expected uncertainty
and variability is rather high. However, the measured microdialysis tissue data lies within
the predicted range. Concludingly, within the framework of this simulation, the developed
PBPK model adequately predicted the average microdialysis tissue concentrations as well
as the associated variability for both adipose and muscle tissue. For the first time, such a
comparison of human tissue PK data obtained by microdialysis and PBPK predictions is
presented.

In summary, a new approach how PBPK models can be used to analyze population PK
data, integrate sources of known variability and to quantify the unexplained between patient
variability is presented. Additionally, the new approach is used to estimate missing physic-
ochemical properties and to adapt the literature–based physiological parameters. Finally,
clinical microdialysis measurements and the population PBPK modeling approach were com-
pared. The developed population PBPK model is able to adequately predict adipose and
muscle ISF tissue concentrations, emphasizing the consistency between both approaches.
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Mechanistic NLME modeling in Psycholinguistics
Obviously, the difficulty to combine mechanistic and NLME modeling is not only confined
to the field of pharmacology. Furthermore, mechanistic modeling approaches are not limited
to motivate only the structural, but also the stochastic part of a model. For example, in
the field of psycholinguistic Magnuson et al. [2003] conducted an experiment to study the
recognition competition of phonologically similar words. The study participants listened
to vocal utterances and were exposed to visual stimuli at the same time while their eye
movements were tracked over time. The experiments were repeated N times and the results
were represented in the form that at time t participant ’X’ fixated item ’1’ in K1, item
’2’ in K2 and item ’3’ in K3 out of the N experiments. Mirman et al. [2008] based their
analysis of this study on the aggregated data Kj/N, 1 ≤ j ≤ 3 and used linear mixed effects
modeling assuming a normally distributed WSV model. Thus, they neglected the fact that
Kj/N ∈ [0, 1] which differs from the support of the normal distribution (−∞,∞), but even
more, they neglected the discrete stochastic nature of the experiment and as a consequence
accepted a loss of information.

As a structural model Mirman et al. [2008] used an empirically motivated polynomial
function with degree 3 and analyzed each of the three items separately. This approach has
a number of drawbacks, (i) the parameters of polynomial function with degree 3 do not
have a direct link to the process of interest or the experiment, (ii) the dependency, i.e. the
competition, between the measured frequency of the three items K1, K2 and K3 has been
neglected and (iii) through the aggregation, the discrete nature of the experiment and for
this reason the number of experiment executions N has been neglected.

Therefor, in Chapter 6 in a first step, we developed a structural model which takes
into account the competition between the phonologically similar words. The structural
model describes the probability time-course to look at each of the three items. Because the
observations in this experiment are discrete items, which were fixated, we describe a discrete
WSV model motivated by the experimental setting and included this into the NLME analysis
of the eye movement data. The conjugated Dirichlet-multinomial distribution is chosen as
WSV model, where the multinomial distribution takes into account the multivariate, discrete
stochastic nature of the observations, while the Dirichlet distribution allows for flexible
modeling of the shape of the WSV distribution, in particular w.r.t. the order of magnitude
of the variance and the skewness of the distribution.

With the results of the analysis we were able show that the mentioned drawbacks of the
Mirman et al. [2008] analysis could be solved. Using conjugated priors in NLME modeling
offers potential for further investigation, for example how conjugated priors of the normal
distribution could be incorporated in NLME modeling and EM context.

In summary, in this thesis the mathematical framework of NLME modeling based on de-
terministic approximations is systemically presented and an effective NLME estimation algo-
rithm is described. Thereon based, we introduced a new approach showing how mechanism-
driven NLME modeling can be used in the analysis of repeated measurement studies for two
real world problems from quantitative pharmacology and psycholinguistics.
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Part I.

The Mathematical Theory of Nonlinear
Mixed Effects Modeling
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1.1. Introduction

In a repeated measurement study, the quantity of interest is measured for the same subject
under varying experimental conditions. The objective is to investigate the relationship
between the varying conditions—the independent variables x—and the measurement—the
dependent variables y, and to describe this process with a mathematical model f . This
design arises in many life sciences with the aim to quantitatively describe a process not only
for a single subject, but for the entire population of interest. To this end, the repeated
measurement design is applied to a number of subjects 1, . . . , N assuming them to be a
random sample of the population of interest. This results in the sample y1, . . . ,yN , with
yi ∈ Rni containing the ni ≥ 1 repeated measurements for each subject

yi = (yi1, . . . ,yini
)T , 1 ≤ i ≤ N,

with a total number of measurements Nn :=
∑N

i=1 ni.
An established assumption is that the mathematical model f , relating the dependent

to the independent variable, is identical across the population. Furthermore, it is assumed
that y1, . . . ,yN are realizations of a random sample Y1, . . . ,YN ∼ FYβ , where FYβ denotes
a distribution function which usually depends on some unknown parameter β ∈ Υβ , where
Υβ denotes the parameter space of β. For example, a widely applied statistical model for
repeated measurement data is given by

Yij = f(xij ;Θi) + εij , εij ∼ N (0, σ2), Θi ∼ FΘ, (1.1)

for 1 ≤ j ≤ ni and 1 ≤ i ≤ N , with f : Rkij ×Rp → R and σ > 0, where kij ≥ 0 denotes the
dimension of the independent variables xij ∈ Rkij , p > 0 denotes the dimension of Θi and
FΘ denotes the distribution function of Θ1, . . . ,ΘN .

Based on these assumption, the so–called population analysis aims to specify the model
f , denoted as structural model, the distribution FΘ, denoted as the BSV model, and the so–
called WSV model describing the link between the model predictions and the measurements.
A widely used and powerful approach to determine these three parts is given by the NLME
approach. A NLME model contains fixed and random effects, where fixed effects are those
parameters which are assumed to be identical in the population, while the random effects
describe the variability within parameters in the study population. This variability between
subjects is represented by the random variables Θ1, . . . ,ΘN and their distribution FΘ. The
mix of fixed and random effects led to the terminology ’mixed effects modeling’. The term
’nonlinear’ indicates that the structural model f(xi; θi) is a nonlinear function of θi ∈ Rp.

The WSV model presented in Equation (1.1) is denoted as additive error model, in the
following section the most widely applied parametric WSV and BSV models are briefly
presented, motivated and discussed. Previously, a brief introduction to pharmacokinetics is
given; the PK of a drug is often characterized using NLME modeling and we will use this
field for illustration purposes in the first part of this thesis.

In the Chapters 2 and 3, the utility of a NLME analysis is presented and a mathematical
methodology and framework to perform them are described. The determination of parameter
estimates in the NLME context is based on the maximum likelihood principle; a detailed
introduction to the maximum likelihood principle can for example be found in Wasserman
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1. Introduction to NLME

[2004]; Boos and Stefanski [2013] or Wakefield [2013]. The NLME approach will be illustrated
based on data from a PK study of the drug levofloxacin in Section 3.3. The example
demonstrates that the NLME approach is a very powerful tool to analyse population data
from a repeated measurement study. In addition, the example is used to introduce useful
modeling tools to diagnose the model’s ability to describe the underlying data, and to test
the robustness of the model. These tools are then used in the application in Part II.

1.1.1. Pharmacokinetics

Pharmacokinetics (PK) belongs to the field of pharmacology and means movement of the
drug. Heuristically, it can be described as the science of what the body does to a drug,
whereas pharmacodynamics (PD), another field of pharmacology, is the science of what the
drug does to the body. The PK of a drug are broadly composed of the following 4 processes:

• Absorption: the process from administration of a drug until it enters the circulating
blood,

• Distribution: the process how the drug is distributed in the body,

• Metabolism: how the drug is transformed into other, pharmacological active or non–
active, molecules,

• Excretion: how the drug is removed from the body.

These four processes are the basis of the finally observed drug concentration–time course in
the body. An comprehensive overview over PK and PD can be found in Rowland and Tozer
[2011].

Repeated measurement studies and the corresponding population analysis are a necessary
tool to characterize the PK of a drug within a population. The dependent variable is usually
the drug concentration in blood plasma or serum taken at different time points after the
administration of the drug. The independent variables are the sampling time points, the
dosing information and the subject’s covariates which might influence the PKs of a drug,
such as ethnicity, age, etc.

In PK, in general, the function f(xi; θi), which describes the concentration–time course
of the drug, is a nonlinear function with respect to the parameter θi.

1.2. Parametric Within and Between Subject Variability
Models

The WSV represents the variability which can arise between measurements within each
subject. It usually comprises rather diverse sources. In pharmacokinetics, the main sources
for this deviation are, see Bonate [2011, p. 243],

• Uncertainty in the determination of the drug concentration in the plasma or tissue
fluid sample due to the bio–analytical method,

• Model misspecification and incorrect assumptions, e.g. error–free documentation of
administration times.
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1.2. Parametric Within and Between Subject Variability Models

In general, the error of the bio–analytical method in the determination of the drug concen-
trations is proportional to the drug concentration, EMEA [2011, sec. 4]. According to the
guideline (EMEA [2011, sec. 4]), the magnitude of this variation has to be quantified based
on repeating the concentration determination several times for one of the samples. If the
estimated WSV is larger than the variability of the analytical method, the difference can be
interpreted as a model misspecification or incorrect assumptions. Naturally, the objective
of mathematical modeling is to minimize the magnitude of this remaining part of WSV.

An important implicit assumption in many modeling approaches is the correct determi-
nation and documentation of the values of the independent variables. If these values are not
error-free, so–called errors in variables models can be applied, see [Schennach, 2004].

For example, in pharmacokinetics it sometimes occurs, that the sampling or dosing times
are not correctly documented, e.g. see Karlsson et al. [1998]. The sampling time points in
a clinical PK study are usually fixed a priori to have an as informative as possible sam-
pling regime. However, the exact compliance of this scheme—within the clinical routine—is
often not feasible and deviations are most likely not always documented. In general, this
can be expected to have negligible impact. However, in a time span where rapid changes
in the concentration occur, an incorrect documentation of the sampling time points will
have larger impact on the WSV. In general, such rapid changes in concentration appear
during and shortly after the dosing, or absorption phase. Naturally, in these phases higher
concentrations arise, see Figure 1.1.
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Figure 1.1.: Errors in Variables: Both plots show the concentration–time profiles of a two compart-
ment model, with a 30 minutes infusion. In the left plot a sample is taken at t = 35 min, 5 minutes
after the planned time without the documentation of this deviation. The resulting residual variation
between true value and measurement is −12%. In the right plot, about 16 hours later, the sample is
measured 5 minutes after the planned time again. The deviation here is only −0.5%.

Even so errors in variables might frequently occur, the impact on the correct determina-
tion of the model parameters is expected to be small. Thus, in general, one is either not able
or not interested to successfully distinguish between the errors in variables and the WSV.
For example, Karlsson et al. [1998] investigated the impact of errors in the sampling times.
They analyzed the substance moxondine and observed, that “a random shift of ±10 min
according to a uniform distribution did not lead to any appreciable change in the parameter
estimates apart from an increase in the residual error magnitude”. As a consequence, the
uncertainty related to the determination of the independent variables is allocated to the
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1. Introduction to NLME

WSV.

Assume for subject i the observations yi1, . . . ,yini
are realizations of a random vector

Yi = (Yi1, . . . ,Yini
)T = f(xi; θi) + εi, εi ∼ Nni(0, Iniσ2

i ), (1.2)

with εi = (εi1, . . . , εini
)T , f(xi; θi) := (f(xi1; θi), . . . , f(xini ; θi))

T , Ini = diag (1, . . . , 1) ∈
Rni×ni and θi ∈ Rp. As a consequence Yi is multivariate normally distributed with entries
Yij1 and Yij2 , j1 6= j2, being independent of each other. The model presented in Equa-
tion (1.2) is called additive error model and reflects a constant, concentration independent
variance around the model predictions.

A reasonable solution to consider the behavior illustrated in Figure 1.1 and the propor-
tionality of the bio–analytical error is to assume the WSV to be concentration dependent, i.e.
the magnitude of WSV increases with the model predictions. A common strategy to model
a concentration dependent WSV is to weight the residual term with a weighting function
w : Rkij × Rp × R → R, where ζ could be a further parameter to influence the weighting.
Thus, the variance-covariance of Yij is given by

Yij ∼ Nni
(
f(xij ; θi), w(xij ; θi, ζ)2 σ2

i

)
. (1.3)

The variability in Yij is often quantified by the coefficient of variation (CV), defined as

CV% (Yij) = 100 ·
√

Varβi [Yij ]

IEβi [Yij ]
, (1.4)

where IEβi [Yij ] and Varβi [Yij ] denote the expected value and variance–covariance of Yi
defined as

IEβ [Yij ] =

∫
y pYij (y;β) dy, (1.5)

Varβ [Yij ] =

∫
(y − IEβ [Yij ])

2 pYij (y;β) dy, (1.6)

Accordingly, the CV of both introduced error models is given by:

• Additive error model:

Yij ∼ N
(
f(xij ; θi), σ

2
i

)
,

CV% (Yij) = 100 · σ2
i

f(xij ; θi)
.

• Weighted error model:

Yij ∼ N
(
f(xij ; θi), w

2(xij ; θi, ζ)σ2
i

)
,

CV% (Yij) = 100 · w(xij ; θi, ζ)σ2
i

f(xij ; θi)
.
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1.2. Parametric Within and Between Subject Variability Models

A popular choice of the weighting function is w(xij ; θi, ζ) = f(xij ; θi). Using f as weighting
relates the magnitude of WSV for a measurement yij to its predicted value f(xij ; θi).

The resulting error model is called proportional error model

Yij = f(xij ; θi) (1 + εij) with CV% (Yij) = 100 · σ2
i . (1.7)

In a classical regression context, compared to the additive error model, the corresponding
maximum likelihood estimation results in a so–called penalized least squares problem

(θ̂i, σ̂
2
i )(Yi) = arg min

θi∈Rp,σ2
i ∈R>0

ni∑
j=1

(
log
(
f2(xij ; θi)σ

2
i

)
+

(Yij − f(xij ; θi))
2

f2(xij ; θi)σ2
i

)
, (1.8)

where the estimation of θi and σ2
i are not independent of each other.

In PK, the random variable Yi describes the measured drug concentrations of subject
i. Naturally, concentrations are non–negative. For the additive, as well as the propor-
tional error model, the probability that negative concentrations can be measured is positive
P (Yij < 0) > 0 which leads to a theoretical inconsistency. An approach to avoid this is it
to apply the log transformation on the data yi and the model f , and to assume an additive
error in the log transformed space

Yi = log f(xi; θi) + εi, εi ∼ Nni
(
0, Iniσ

2
i

)
. (1.9)

In regression analysis log–transformations of data and model are a widely used if a het-
eroscedastic error is assumed, e.g. see Beal and Sheiner [1988].

The additive error model in Equation (1.9) is equivalent to the so called exponential error
model

Yi = f(xi; θi) e
εi with CV% (Yij) = 100 ·

√
eσ

2
i − 1. (1.10)

The exponential error model satisfies the assumption that only positive measurements are
possible P (Yi ≤ 0) = 0 and attains a constant CV% , implying a concentration dependent
WSV. Furthermore, for a small WSV σ2 it is

√
eσ2 − 1 ≈ σ2 and the difference between

exponential and proportional error model is negligible.

In general, a parametric distribution is assumed for the random effects characterizing
the BSV. If the underlying data is sufficient and no distributional assumption regarding the
random effects can be made, so–called non–parametric methods can be applied. However,
in practice these approaches are rarely used, particularly in life sciences the assumption of
normally or log–normally distributed parameter within a population are well accepted, see
Karlsson et al. [1998]; Limpert et al. [2001].

The assumption that Θi is multivariate normally distributed implies the possibility to
model the single entries of Θi as normally or log–normally distributed. For example, if the
k-th entry of Θi is log–normally distributed, this entry can be replaced by expΘi

′
(k), where

Θi
′
(k) is normally distributed. The marginal distribution of the original Θi and Θ′i, which is

identical to Θi except that the k-th entry is replaced as described, are identical. However,
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1. Introduction to NLME

in general, the exact correlation structure is not retained under the exp–transformation. Al-
though, properties like independence, positive or negative correlations are preserved under
strict monotone increasing transformations, e.g. such as log– or exp–transformations, see
Nelsen [2007].

In summary, in the following it is assumed that the error is additive. This generalization
allows to consider an additive error for untransformed data and model, as well as for log–
transformed data and model (exponential error model). Furthermore, a normal distribution
is chosen to characterize the BSV (FΘ) .
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2. NLME methodology using deterministic
approximations of the likelihood function

2.1. Mixed Effects Models

Based on the considerations as presented in Section 1.1, we define a NLME model for the
additive error model, with normally distributed error and normally distributed population
parameters as

Yi = f(xi;Θi, ϑ) + εi with εi ∼ Nni
(
0, Iniσ

2
)
and Θi ∼ Np (θ, Ω) , (2.1)

for 1 ≤ i ≤ N , with positive definite covariance matrix Ω ∈ Rp×p>0 , εi and Θi being indepen-
dent from each other, θ ∈ Rp is usually denoted as typical value and ϑ ∈ Rq.

Another common parametrization of Equation (2.1) is given by

Yi = f̃(xi;η, ϑ̃) + εi with εi ∼ Nni
(
0, Iniσ

2
)
and η ∼ Np (0, Ω) , (2.2)

with ϑ̃ = (ϑ, θ), η = Θi − θ and f̃(xi;η, ϑ̃) = f(xi; θ + η, ϑ).
The parameter vectors θ and ϑ are constant within the population; therefore, they are

called fixed effects. The random variables Θi or η describe the variability between subjects
and are called random effects. The distinction between parameters that are constant across
the population (’pure’ fixed effects ϑ and fixed effects associated with random effects θ) and
parameters that vary across the population represents a crucial advantage of the NLME ap-
proach. For example, in general, in a study population PK parameters are typical examples
of random effects Θi and the typical values of these parameters would be represented by
fixed effects associated with random effects (θ). However, in many examples BSV cannot be
identified in all PK parameters; these parameters would be considered as fixed effects not
associated with random effects (ϑ).

The distribution of Yi is defined by the distributions ofΘi and εi. The likelihood function
to derive the ML estimates is given by

LN
(
ϑ, θ,Ω, σ2;y1, . . . ,yN

)
:=

N∏
i=1

pYi
(
yi;ϑ, θ,Ω, σ

2
)

(2.3)

has to be maximized.
To determine the analytical expression of LN , the analytical expression of pYi is necessary.

However, because f is nonlinear, in general, the distribution of f (xi;Θi, ϑ) and thereby the
distribution of Yi cannot be expressed in an analytically closed form.

Though, using the law of total probability for continuous random variables, pYi can be
written as

pYi (yi;β) =

∫
Rp
pYi|Θi=θi

(
yi, θi;ϑ, σ

2
)
pΘi (θi; θ,Ω) dθi, (2.4)
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2. NLME methodology using deterministic approximations of the likelihood function

with β = (ϑ, θ,Ω, σ2) and where pYi|Θi=θi denotes the probability density function (p.d.f.)
of the conditional random variable (Yi|Θi = θi).

The random variables Yij1 and Yij2 , j1 6= j2, describe two different observations at time
tij1 and tij2 within the same individual, i.e. both depend on Θi and are not independent.
However, following the assumption, the conditional random variables Yij1 |Θi and Yij2 |Θi

are independent and the conditional distribution of Yi|Θi = θi is given by

(Yi|Θi = θi) ∼ Nni
(
f (xi; θi, ϑ) , Iniσ

2
)
, (2.5)

with p.d.f.

pYi|Θi=θi
(
yi, θi;ϑ, σ

2
)

=
1√

(2πσ2)ni
exp

− 1

2σ2

ni∑
j=1

(yij − f(xij ; θi, ϑ))2

 . (2.6)

Furthermore, the p.d.f. pΘi is given by

pΘi(θi; θ,Ω) =
1√

(2π)p|Ω|
exp

(
−1

2
(θi − θ)TΩ−1(θi − θ)

)
. (2.7)

In the following, the abbreviations li(θi) := pYi|Θi=θi(yi; θiϑ, σ
2) representing the WSV and

h(θi) := pΘi(θi; θ,Ω) represents the BSV are used.
Thus, Equation (2.4) can be written as

pYi(yi;β) =

∫
li(θi)h(θi) dθi. (2.8)

In general, no analytical solution of the integral in Equation (2.8) exists if f is a nonlinear
function. As a consequence, the likelihood function LN has no closed-form expression on the
basis of which the ML estimates can be defined. Concludingly, using a deterministic approach
to NLME modeling the unknown probability distribution of Yi has to be approximated. To
this end, a commonly used approach is to approximate the integrand in Equation (2.8) such
that the integral can be solved and expressed analytically.

In the next subsection the most commonly used approximation—namely, the Laplacian,
the first–order conditional estimation (FOCE) and the first-order (FO) method—are de-
scribed. The Laplacian and FOCE approximation consist of two steps: first, the mode θ̂i
of li · h given β and yi is determined, secondly, using the so–called Laplace method pYi is
approximated based on θ̂i. The FO used the typical population value θ instead of the mode
for the Laplace method. Because the estimation of θ̂i in the Laplacian and FOCE method
itself is a nonlinear regression problem, only the FO method provide a close-form expres-
sion of the approximated likelihood function which can be optimized, e.g. using numerical
methods, to determine the ML estimates. The determination of ML estimates based on
the Laplacian and FOCE method is more complex and an alternating process is necessary:
first, θ̂i is determined for all subjects 1 ≤ i ≤ N and secondly, the approximated likelihood
function given the estimates θ̂1, . . . , θ̂N is optimized with respect to β, see Beal and Sheiner
[1998, p. 3].

An alternative iterative approach is based on the EM algorithm, e.g. see Dempster et al.
[1977]. The advantage of the EM algorithm consists of the fact that no closed-form solution
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or approximation of the likelihood function is necessary. Given the parameters β(k) the
algorithm iteratively determines new parameter values β(k+1) such that

LN (β(k+1);y1, . . . ,yN ) ≥ LN (β(k);y1, . . . ,yN ). (2.9)

An iteration of EM algorithm consists of two steps, the E-step and the M-step which are
iterated until a pre-defined convergence criterion is reached. Several EM algorithms in the
context of NLME modeling exists, which usually have a similar M-step, while the E-step
differs. The most popular EM algorithms in the context of NLME modeling use stochastic
approximation in the E-step (Kuhn and Lavielle [2005]; Walker [1996]). These algorithms
share the advantage that the approximation accuracy can be controlled with the number
of iterations in the stochastic approximation step. I.e. increasing the number of iterations,
which comes with an increase of computational cost, improves accuracy. In contrast to
this, the accuracy of deterministic approximations mainly depends on the complexity of the
NLME model, in particular the complexity of f and the choice of the random effects model,
and the available data. As a consequence, for complex models and/or sparse data situations
stochastic methods seems to be superior in terms of stability and parameter bias compared
to deterministic methods, e.g. see Liu and Wang [2016]; Bauer et al. [2007]; Gibiansky et al.
[2012]; Plan et al. [2012]. Nevertheless, for rather simpler NLME models and dense data Liu
and Wang [2016]; Bauer et al. [2007]; Gibiansky et al. [2012]; Plan et al. [2012] consistently
conclude that deterministic methods seem to perform sufficiently well. Mechanistic PK
modeling is usually applied in the analysis of rather small studies with dense sampling for
all subjects, e.g. preclinical studies or clinical phase I studies dedicated to investigate PK
and/or PK interactions with comedication or food. Concludingly, if the NLME model set
up is not too complex, combining mechanistic modeling with deterministic NLME methods
is expected to be sufficient, while typically going with lower computational effort compared
to a stochastic method.

Such a deterministic EM algorithm in the context of NLME modeling, where the E-step
is derived using deterministic approximations, is described in Section 3.1. As the basis for
this, the most commonly used deterministic approximations of the likelihood function are
described in the next section.

2.2. Deterministic Approximations of the Likelihood Function

2.2.1. Introduction

In this section the Laplacian, the FOCE and the FO approximations of likelihood function
defined in Equation (2.4) are presented. These approximations are described in several pub-
lications; a good overview can be found in Wang [2007]. For simplification, Wang [2007]
only considered an univariate random effect Θi, while in the following this is generalized to
the multivariate case. Moreover, in the following the differences between the three approxi-
mation methods are illustrated.

All three methods are based on the Laplace method for the approximation of integrals of
the form

I(m, g) :=

∫
emg(θi) dθi,
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2. NLME methodology using deterministic approximations of the likelihood function

for a three times continuous differentiable function g with I(m, g) < ∞ for all m > 0. The
approximation of the integral is based on the approximation of g by its second order Taylor
series approximation g̃ around θ̂i ∈ Rp

g(θi) = g(θ̂i) +∇θig(θ̂i)
T (θi − θ̂i) +

1

2
(θi − θ̂i)T∇2

θi
g(θ̂i)(θi − θ̂i)︸ ︷︷ ︸

=:g̃(θi)

+R3(θi), (2.10)

with a rest term R3(θi) → 0 for θi → θ̂i. The integral over the second order polynomial g̃
can be solved analytically by relating g̃ to the multivariate normal p.d.f. and using the fact
that the integral over the p.d.f. is always identical to 1

I(m, g̃) = emg(θ̂i)

√
(2π)p

m| − ∇2g(θ̂i)|
e−

1
2
m∇g(θ̂i)T (∇2g(θ̂i))

−1∇g(θ̂i) (2.11)

If θ̂i = arg maxθi∈Rp g(θi), the approximation error of the approximation in Equation (2.11)
vanishes with increasing m→∞, see De Bruijn [1958, chap. 4] or Wong [2001, chap. 2].

Using the Laplace method for Equation (2.8) the term mg is given by g(θi) := log li(θi)+
log h(θi) with m is fixed to 1. I.e. given the observations, the model and the parameter val-
ues, only the choice of g̃ and therewith the choice of θ̂i influences the approximation accuracy.

Approximating g by its second order Taylor approximation at θ̂i ∈ Rp and applying the
Laplace method to Equation (2.8) leads to

−2 log pYi(yi;β) ≈ −p log 2π − 2g(θ̂i) + log
∣∣∣−∇2g(θ̂i)

∣∣∣ (2.12)

+∇g(θ̂i)
T
(
∇2g(θ̂i)

)−1
∇g(θ̂i). (2.13)

Vonesh [1996] stated that the associated approximation accuracy is improving with increas-
ing ni. To determine g̃, the first and second derivatives of log li and log h have to be derived

∇ log li(θi) =
∇li(θi)
li(θi)

=
1

σ2

ni∑
j=1

∇θif(xij ; θi, ϑ) (yij − f(xij ; θi, ϑ)) , (2.14)

∇ log h(θi) =
∇h(θi)

h(θi)
= Ω−1(θ − θi), (2.15)

∇2 log li(θi) =
∇2li(θi)

li(θi)
− ∇li(θi)∇li(θi)

T

l2i (θi)

=
1

σ2

ni∑
j=1

∇2
θi
f(xij ; θi, ϑ) (yij − f(xij ; θi, ϑ))

− 1

σ2

ni∑
j=1

∇θif(xij ; θi, ϑ)∇θif(xij ; θi, ϑ)T , (2.16)

∇2 log h(θi0) = −Ω−1. (2.17)
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2.2. Deterministic Approximations of the Likelihood Function

Considering that the p.d.f. of Yi does not depend on θi, i.e. ∇2
θi

log pYi(yi;β) = 0, the
Hessian of g can be written as

∇2
θi
g(θi) = ∇2

θi

(
log li(θi) + log h(θi)− log pYi(yi;β)

)
. (2.18)

On the other hand, according to Bayes’ theorem it is

log pΘi|Yi=yi(θi;β,yi) = log pYi|Θi=θi(yi; θi, ϑ, σ
2)︸ ︷︷ ︸

=li(θi)

+ log pΘi(θi; θ,Ω)︸ ︷︷ ︸
=h(θi)

− log pYi(yi;β).

(2.19)

Combining Equations (2.18) and (2.19) implies that

∇2g(θi) = ∇2
θi

log pΘi|Yi=yi(θi;yi, β) =: −
(
CΘi|Yi=yi(θi)

)−1
.

For a random vector X ∼ Nr (µ, Σ) the Hessian of its log p.d.f. is the negative, inverse of
the variance–covariance matrix, i.e.

∇2
x log pX(x;µ,Σ) = −Σ−1.

Hence, if the random variable (Θi|Yi = yi) is normally distributed, the respective variance–
covariance matrix is given by CΘi|Yi=yi(θi). In the following, an abbreviated notation is
used for the conditional variable Zi := (Θi|Yi = yi).

In fact, the distribution of Zi depends on the distribution of Yi, which is not known.
Therefore, it can not be derived analytically. However, from Bayes’ theorem we can con-
clude that an approximation of pYi is equivalent to an approximation of pZi . The latter is
presented in the next section and is used to determine the E-step of the deterministic EM
algorithm.

The Laplacian, FOCE and FO method which are discussed in the following sections are
based on the above Laplace approximation and only differ in the choice of θ̂i.

2.2.2. Laplacian Method

In the context of NLME models, for the Laplacian approximation of −2 log pYi , the Laplace
method (see Equation (2.11)) is applied for θ̂i as the point where g has its maximum. I.e.
given the data yi and the parameters β, θi is defined as

θ̂i(yi;β) = arg max
θi∈Rp

log li(θi) + log h(θi)

= arg min
θi∈Rp

1

σ2

ni∑
j=1

(yij − f(xij ; θi, ϑ))2 + (θ − θi)T Ω−1 (θ − θi) . (2.20)

Under suitable regularity conditions, it follows that ∇g(θ̂i(yi;β)) = 0 and ∇2g(θ̂i(yi;β))
is negative definite. The estimate θ̂i(yi;β) for subject i is called empirical Bayes estimate
(EBE), maximum a-posterior estimate or post-hoc estimate. In NLME modeling, the EBE
represents the individual parameter estimates.

21



2. NLME methodology using deterministic approximations of the likelihood function

Using Equations (2.11, 2.14, 2.15, 2.16) and (2.17), the Laplacian approximation is given
by

− 2 log pYi(yi;β) ≈ ni log 2π + ni log σ2 +
1

σ2

ni∑
j=1

(
yij − f(xij ; θ̂i(yi;β), ϑ))

)2

+ log |Ω|+
(
θ − θ̂i(yi;β)

)T
Ω−1

(
θ − θ̂i(yi;β)

)
+ log

∣∣∣∣∣∣ 1

σ2

ni∑
j=1

∇θif(xij ; θ̂i(yi;β), ϑ)∇θif(xij ; θ̂i(yi;β), ϑ)T

− 1

σ2

ni∑
j=1

∇2
θi
f(xij ; θ̂i(yi;β), ϑ) (yij − f(xij ; θ̂i(yi;β), ϑ)) + Ω−1

∣∣∣∣∣∣ . (2.21)

In order to apply the Laplacian approximation, in a first step θ̂i(yi;β) has to be determined.
In general, the parameter θ̂i(yi;β) cannot be derived analytically and has to be determined
using numerical optimization methods. As a consequence, the Laplacian approximation does
not provide a closed-form expression of log pYi as function of yi and β.

The following consideration are of use for the deterministic EM algorithm which is de-
scribed in Section 3.1. The Laplacian approximation in Equation (2.21) is equivalent to

− log pYi(yi;β) ≈ − log pYi|Θi=θi(yi; θ̂i(yi;β), ϑ, σ2)− log pΘi(θ̂i(yi;β); θ,Ω)

+ log pZ
LA
i (θ̂i(yi;β);β,yi),

with θ̂i(yi;β) defined as above and ZLA
i denoting the random variable with distribution

defined by the p.d.f.:

pZ
LA
i (θi;β,yi) =

1√
(2π)p

∣∣∣CZLA
i

∣∣∣ exp

(
−1

2
(θi − θ̂i(yi;β))T

(
CZ

LA
i

)−1
(θi − θ̂i(yi;β))

)
,

where CZLA
i :=

(
−∇2g(θ̂i(yi;β))

)−1
. Hence, the random variable ZLA

i is normally dis-
tributed

ZLA
i ∼ Np

(
θ̂i(yi;β), CZ

LA
i

)
. (2.22)

It is worth noting, that both the p.d.f.s of Zi and ZLA
i have θ̂i(yi;β) as their mode. Fur-

thermore, based on Bayes’ theorem it is

log pYi(yi;β) = log pYi|Θi=θi(yi; θi, σ
2) + log pΘi(θi; θ,Ω)

− log pZi(θi;β,yi).

This implies that approximating the distribution of Zi by the distribution of ZLA
i as defined

in Equation (2.22) and applying Bayes’ theorem leads to the Laplacian approximation of
pYi for θi = θ̂i(yi;β).

22



2.2. Deterministic Approximations of the Likelihood Function

2.2.3. First–Order Conditional Estimation Method

A further simplification of the Laplacian approximation is given by the FOCE approximation.
Reconsidering the definition of observed and expected Fisher information (see for example
Wakefield [2013, p. 37ff]), the term −∇2 log li(θi) represents an estimate of the observed
Fisher information of (Yi|Θi = θi) given the data yi. The idea behind the FOCE method
is to approximate the estimate of the observed Fisher by an estimate of the (expected)
Fisher information −IEβ

[
∇2
θi

log pYi|Θi=θi((Yi|Θi = θi); θi, ϑ, σ
2)
]
. As a consequence, the

often numerical challenging computation of ∇2li is avoided, because

− IEβ

[
∇2
θi

log pYi|Θi=θi(Yi|Θi = θi; θi, ϑ, σ
2)
]

=
1

σ2

ni∑
j=1

∇θif(xij ; θi, ϑ)∇θif(xij ; θi, ϑ)T

− 1

σ2

ni∑
j=1

∇2
θi
f(xij ; θi, ϑ) (IEβ [Yij |Θi = θi]− f(xij ; θi, ϑ))︸ ︷︷ ︸

=0

, (2.23)

see Equation (2.16). Using −∇2 log li(θi) ≈ −IEβ
[
∇2
θi

log pYi|Θi=θi(Yi|Θi = θi; θi, ϑ, σ
2)
]

leads to the following simplification

∇2g(θi) ≈ −
1

σ2

ni∑
j=1

∇θif(xij ; θi, ϑ)∇θif(xij ; θi, ϑ)T − Ω−1 =: −
(
CZ

FOCE
i

)−1
. (2.24)

Finally, for θi = θ̂i(yi;β) (see Equation (2.20)) the FOCE approximation of log pYi is given
by

− 2 log pYi(yi;β) ≈ ni log 2π + ni log σ2 +
1

σ2

ni∑
j=1

(yij − f(xij ; θ̂i(yi;β), ϑ))2

+ log |Ω|+ (θ − θ̂i(yi;β))TΩ−1(θ − θ̂i(yi;β))

+ log

∣∣∣∣∣∣ 1

σ2

ni∑
j=1

∇θif(xij ; θ̂i(yi;β), ϑ)∇θif(xij ; θ̂i(yi;β), ϑ)T + Ω−1

∣∣∣∣∣∣ . (2.25)

Analogously to the Laplacian method, approximating the distribution Zi by the distribution
of

ZFOCE
i ∼ Np

(
θ̂i(yi;β), CZ

FOCE
i

)
(2.26)

and applying Bayes’ theorem leads to the FOCE approximation in θi = θ̂i(yi;β).
According to Wang [2007], the FOCE approximation is analogous to approximating the

distribution of Yi by the distribution of Ỹi, with

Ỹi = f(xi; θ̂i(yi;β), ϑ) + Jθif(xi; θ̂i(yi;β), ϑ) (Θi − θ̂i(yi;β)) + εi, (2.27)

with Θi ∼ Np (θ, Ω), εi ∼ Nni
(
0, Iniσ

2
)
and Jθif(xi; θ̂i(yi;β), ϑ) denoting the Jacobian

matrix of f w.r.t. θi evaluated at θ̂i(yi;β). This implies, that Ỹ is normally distributed
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2. NLME methodology using deterministic approximations of the likelihood function

with p.d.f. defined in Equation (2.25) and with

IEβ

[
Ỹ
]

= f(xi; θ̂i(yi;β), ϑ) + Jθif(xi; θ̂i(yi;β), ϑ) (θ − θ̂i(yi;β)),

Varβ

[
Ỹ
]

= Jθif(xi; θ̂i(yi;β), ϑ) ΩJθif(xi; θ̂i(yi;β), ϑ) + Iniσ
2.

A heuristic argument to derive Equation (2.27) is to replace f by its first order approximation
at θi = θ̂i(yi;β)

f(xij ; θi, ϑ) ≈ f(xij ; θ̂i(yi;β), ϑ) +∇θif(xij ; θ̂i(yi;β), ϑ) (Θi − θ̂i(yi;β)). (2.28)

Analogously, to the previous Section 2.2.2, the FOCE approximation does not have a closed-
form expression, if θ̂i(yi;β) cannot be expressed in closed form. From a theoretical point of
view, the approximation accuracy of the FOCE method for g is expected to be worse com-
pared to the Laplacian method at least around θ̂i(yi;β) because an additional approximation
step is used.

2.2.4. First–Order Method

In the context of PK data analysis, Beal and Sheiner [1982] introduced the FO method to de-
rive ML estimates of a NLME model. The FO approximation consists of two simplifications
compared to the Laplacian approximation in Section 2.2.2. The first simplification is to ap-
proximate g by its Taylor approximation around the expectation of Θi, i.e. θ̂i := IEβ [Θi] = θ

(compared to using the mode θ̂i(yi;β)). In general, θ is not the mode of g and therefore
it is ∇g(θ) 6= 0. The second simplification—analogously to the FOCE approximation—
consists in approximation an estimate of the observed by an estimate of the expected Fisher
information of (Yi|Θi = θi). As a result, the FO approximation of log pYi is given by

− 2 log pYi(yi;β) ≈ ni log 2π + ni log σ2 +
1

σ2

ni∑
j=1

(yij − f(xij ; θ, ϑ))2

+ log |Ω|+ log

∣∣∣∣∣∣ 1

σ2

ni∑
j=1

∇θif(xij ; θ, ϑ)∇θif(xij ; θ, ϑ)T + Ω−1

∣∣∣∣∣∣
+

 1

σ2

ni∑
j=1

∇θif(xij ; θ, ϑ) (yij − f(xij ; θ, ϑ))

T

·

− 1

σ2

ni∑
j=1

∇θif(xij ; θ, ϑ)∇θif(xij ; θ, ϑ)T − Ω−1

−1

·

 1

σ2

ni∑
j=1

∇θif(xij ; θ, ϑ) (yij − f(xij ; θ, ϑ))

 . (2.29)
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2.2. Deterministic Approximations of the Likelihood Function

Using the definitions of li, h and g, Equation (2.29) can be written as

log pYi(yi;β) ≈ log li(θ) + log h(θ)

+
p

2
log 2π − 1

2
log |Hi(θ)| −

1

2
∇g(θ)T

(
−Hi(θ)

−1
)
∇g(θ))︸ ︷︷ ︸

−w(θ)

, (2.30)

with Hi(θ) = (∇li(θ) ·∇li(θ)T )/l2i (θ)+Ω−1 denoting the approximation of ∇2g(θ). Further-
more, the term w can be expressed as

w(θ) = −p
2

log 2π − 1

2
log |Hi(θ)

−1| − 1

2
∇g(θ)THi(θ)

−1∇g(θ)

= −p
2

log 2π − 1

2
log |Hi(θ)

−1|

− 1

2

(
θ − (θ −Hi(θ)

−1∇g(θ))
)T
Hi(θ)

(
θ − (θ −Hi(θ)

−1∇g(θ))
)
.

Thus, w is identical to the following p.d.f. evaluated at θi = θ

log pZ
FO
i (θi;β,yi) := −p

2
log 2π − 1

2
log |Hi(θ)

−1|

− 1

2

(
θi − (θ −Hi(θ)

−1∇g(θ))
)T
Hi(θ)

(
θi − (θ −Hi(θ)

−1∇g(θ)T )
)
,

of the respective random variable

ZFO
i ∼ Np

(
θ − CZFO

i ∇g(θ), CZ
FO
i

)
, with CZ

FO
i = Hi(θ)

−1. (2.31)

Hence, Equation (2.30) can be written as

log pYi(yi;β) ≈ log li(θ) + log h(θ) + log pZ
FO
i (θ;β,yi).

In conclusion, approximating the distribution of Zi by the distribution of ZFO
i and applying

Bayes’ theorem leads to the FO approximation for θi = θ.
Analogously to the FOCE method, the approximated p.d.f. of Yi can be considered as

the density of the random variable

Ỹi = f(xi; θ, ϑ) + Jθif(xi; θ, ϑ) (Θi − θ) + εi, (2.32)

with Θi ∼ Np (θ,Ω), εi ∼ Nni
(
0, Iniσ

2
)
. This implies that

Ỹi ∼ Nni
(
f(xi; θ, ϑ), Jθif(xi; θ, ϑ) ΩJθif(xi; θ, ϑ) + Iniσ

2
)
.

Again, a heuristic argument to derive Equation (2.32) is to linearize f(xi; θi, ϑ) around θi = θ

f(xij ; θi, ϑ) ≈ f(xij ; θ, ϑ) +∇θif(xij ; θ, ϑ) (Θi − θ).

For the FO method, no intermediate step to derive θ̂i (see Equation (2.11)) is needed.
Therefore, the likelihood function has a closed-form expression.

In the next example the three approximation approaches are illustrated based on the data
and model introduced in Example 2.2.5.
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2. NLME methodology using deterministic approximations of the likelihood function

2.2.5. Example: Distribution of the Empirical Bayes Estimates

In the previous section, Laplacian, FOCE and FO method were derived. Furthermore, a new
interpretation of these methods was introduced. Basically, each method can be interpreted
as an approximation of Zi = (Θi|Yi = yi) by a multivariate normal distribution. The
methods only differ in the choice of the corresponding expectation and variance-covariance,
see Table 2.1.

Table 2.1.: Approximation of the distribution of Zi: All three Laplace based methods are equivalent
in assuming a normal distribution. In the second column, the point in which the Taylor series
approximation of g is developed, denoted as θ̂i, is present.

Method θ̂i IEβ [Zi] Varβ [Zi]

Laplacian θ̂i(yi;β) θ̂i(yi;β)

(
∇θi li(θ̂i(yi;β))∇θi li(θ̂i(yi;β))T

l2i (θ̂i(yi;β))

+ −
∇2
θi
li(θ̂i(yi;β))

li(θ̂i(yi;β))
+ Ω−1

)−1

FOCE θ̂i(yi;β) θ̂i(yi;β)

(
∇θi li(θ̂i(yi;β))∇θi li(θ̂i(yi;β))T

l2i (θ̂i(yi;β))
+ Ω−1

)−1

FO θ
θ −

(∇θi li(θ)∇θi li(θ)T
l2i (θ)

(∇θi li(θ)∇θi li(θ)T
l2i (θ)

+ Ω−1
)−1

+ Ω−1
)−1 ∇g(θ)

For illustration of the different methods the levofloxacin dataset and NLME model which
will be introduced later in the Example 3.3 is considered. The NLME model consists of four
random effects parameters Cl, V1, Q and V2 and the values of the population parameters θ,
Ω and σ2 are given by the ML estimates which will be presented later. Note, in this model
no fixed effects not associated with a random effect ϑ were included.

A stochastic Markov-Chain Monte-Carlo (MCMC) approach was used to create a sam-
pling distribution of Zi for a given set of parameter β = (θ,Ω, σ2). The MCMC and the
Laplace–based approaches are used to approximate the distribution of Zi. The results are
compared w.r.t. expectation and variance of Zi, where the stochastic approximation was
used as benchmark. Simulations and analysis throughout the whole thesis were performed
in R Core Team [2012].

An introduction to Metropolis–Hastings algorithms and their properties can be found in
Chib and Greenberg [1995]. To draw a sample θ(r)

i from the sampling distribution of Zi
with p.d.f.

pZi(θi;β,yi) =

=:exp g(θi)︷ ︸︸ ︷
pYi|Θi=θi(θi; θ, σ

2,yi)p
Θi(θi; θ,Ω)

pYi(yi;β)
∝ exp g(θi),
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2.2. Deterministic Approximations of the Likelihood Function

which is known up to a constant, a candidate from a distribution where a sampling technique
is established is drawn. The latter distribution is denoted as proposal distribution. Based
on a certain criterion the candidate is rejected or accepted. Repeating the procedure leads
to a Markov chain which converges to the aimed–at distribution.

As proposal distribution the multivariate normal distribution with p.d.f.
p(θi; θ

(r−1)
i , CZ

LA
i ) was chosen, centered around the last accepted candidate θ(r−1)

i and with
variance–covariance CZLA

i , as defined in Section 2.2.2. Because the proposal distribution de-
pends on the last accepted candidate, the actual and the last step are not independent, there-
fore this algorithm is a random walk Metropolis–Hastings algorithm. Furthermore, the pro-
posal distribution is symmetric in the sense that p(θ(r)

i ; θ
(r−1)
i , CZ

LA
i ) = p(θ

(r−1)
i ; θ

(r)
i , CZ

LA
i ).

The convergence of this algorithm and the corresponding rate was investigated by Mengersen
and Tweddie [1996]. The Metropolis-Hastings algorithm described in Algorithm 1 was used
to create a sample θ(1)

i , . . . , θ
(R)
i of size R. Gelman et al. [1994] stated that for the prac-

tical implementation of this type of random walk Metropolis–Hastings algorithm, with a
symmetric proposal density and corresponding constant variance-covariance term, an accep-
tance rate between 15 % to 40 % is preferred. To optimize the computational efficiency and
to improve the acceptance rate of the algorithm, the choice of the proposal distribution can
be further improved, e.g. by taking into consideration the random walk for the variance of the
proposal distribution as well. The NLME software packages Monolix, the R–package saemix
as well as NONMEM (for the SAEM method) apply such a strategy. However, as we did
not aim for time–optimized implementation, we used the symmetric proposal distribution
as described above.

The algorithm was applied for each of the 24 subjects in the levofloxacin dataset and iter-
ated R = 20 000 times. The recommendation regarding the acceptance rate was adequately
matched with a rate between 36 % to 38 % for all subjects. For one subject with good
agreement between stochastic and deterministic approximation, the results are illustrated in
Figure 2.1. For all parameters the normal densities and expectations values resulting from
the Laplacian and FOCE method are in good agreement with the empirical density (with
empirical density is meant, that the empirical frequency distribution is scaled in a way that
the histogram has an area of one). The bivariate dependence structure is very well matched
by the Laplacian and FOCE approximations. Overall, the Laplacian and FOCE methods
are visually not distinguishable and provide good approximations. In contrast to that, the
FO method shows poor agreement with the empirical density.

A subject showing a worse performance in approximating Zi by the Laplace–based meth-
ods is shown in Figure 2.2. The shape of the empirical distribution for Q and V2 is left–
skewed. As a consequence, the expectations values are over–estimated for Laplacian and
FOCE method. In addition, a significant difference between Laplacian and FOCE approxi-
mation can be observed, with a better approximation accuracy of the Laplacian method. Due
to the left–skewed marginal distributions obviously also the bivariate dependence structures
are not well matched by the Laplacian and FOCE approximations. Overall, the Laplacian
and FOCE methods differ only slightly from each other and provide good approximations.
Again, the FO method shows poorer agreement with the empirical density compared to
Laplacian and FOCE method.

Based on the law of large numbers (LLN) mean and sample variance are used to esti-
mate IEβ [Zi] and variance–covariance matrix Varβ [Zi]. The results are compared with the
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2. NLME methodology using deterministic approximations of the likelihood function

Algorithm 1 Random Walk Metropolis–Hastings Algorithm to Create the Sampling Dis-
tribution of Zi.

Define number of iterations size R, β := (θ,Ω, σ2) and g(θi) := log pYi|Θi=θi(yi; θi, σ
2) +

log pΘi(θi; θ,Ω).

Estimate θ̂i(yi;β) := arg min −g(θi) and calculate CZLA
i

:=
(
−∇2g(θ̂i(yi;β))

)−1
.

Set θ(0)
i = θ̂i(yi;β).

Set r = 0.
Set naccept = 0.
repeat

Set r = r + 1.
Sample a candidate θ̂i from Np

(
θ

(r−1)
i , CZ

LA
i

)
.

Estimate acceptance ratio log a = g(θ̂i)− g(θ
(r−1)
i ).

Sample a realization u from the uniform distribution U(0, 1).
if a > u then . Acceptance

Set θ(r)
i = θ̂i.

Set naccept = naccept + 1.
else . Rejection

Set θ(r)
i = θ

(r−1)
i .

end if
until r = R
Define acceptance rate naccept/R.
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Figure 2.1.: Example: Adequate approximation quality. Results of stochastic and Laplacian (black
solid line), FOCE (grey dashed line) and FO (grey solid line) approximations of the distribution of
Zi exemplified for one subject of the levofloxacin study. Each histogram shows empirical density and
the associated mean (red vertical line), approximated marginal densities and respective expectation
values. The bivariate scatter plots shows the empirical bivariate distribution with the respective
approximated densities (contour lines). Lower plot shows the observations (black crosses) for the
respective subject and the individual predictions (grey solid line) based on the final model results.
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Figure 2.2.: Example: Inaccuracy of deterministic approximation. Results of stochastic and Lapla-
cian (black solid line), FOCE (grey dashed line) and FO (grey solid line) approximations of the dis-
tribution of Zi exemplified for one subject of the levofloxacin study. Each histogram shows empirical
density and the associated mean(red vertical line), approximated marginal densities and respective
expectation values. The bivariate scatter plots shows the empirical bivariate distribution with the
respective approximated bivariate densities (contour lines). Lower plot shows the observations (black
crosses) for the respective subject and the individual predictions (grey solid line) based on the final
model results.30



2.2. Deterministic Approximations of the Likelihood Function

Laplacian, FOCE and FO approximation in terms of relative bias:

relBias(%) :=
1

N

N∑
i=1

(
β̂i − β0

β0

)
, (2.33)

where β̂i represents the approximated parameter value of a component of IEβ [Zi] or Varβ [Zi],
and β0 the respective reference value determined using stochastic approximation (SA).

The results are listed in in Table 2.2. For all methods the relative bias is smallest for
the expectation value and the relative bias for the diagonals is smaller compared to the off–
diagonals of Varβ [Zi]. For the underlying situation, Laplacian and FOCE method provide
very adequate approximation of IEβ [Zi]. In general, all methods tend to underestimate the
entries of Varβ [Zi]. Overall, for all parameter the range of bias in the underlying subjects is
similar for Laplacian and FOCE method, while for most parameters the FO method performs
markedly worse.

Table 2.2.: Mean and range (in brackets) of relative bias of the Laplace–based estimators for µZi =
IEβ [Zi] and CZi = Varβ [Zi].

Laplacian FOCE FO

µ
Zi
(1) (log Cl) 0.3% (0.02 to 1.0) 0.3% (0.02 to 1.00) 2.2% (−14.0 to 50.0)
µ
Zi
(2) (log V1) −0.07% (−5.6 to 1.5) −0.07% (−5.6 to 1.5) 1.7% (−18.9 to 28.6)
µ
Zi
(3) (logQ) −0.05% (−0.8 to 1.1) −0.05% (−0.8 to 1.1) 2.2% (−21.8 to 29.6)
µ
Zi
(4) (log V2) −0.09% (−0.3 to 0.9) −0.09% (−0.3 to 0.9) 0.9% (−10.1 to 23.8)

C
Zi
(1,1) −3.1% (−12.7 to 4.4) −2.3% (−14.9 to 9.3) −3.5% (−77.0 to 112.9)

C
Zi
(2,2) −5.3% (−23.5 to 5.8) −15.6% (−46.1 to 7.6) −1.7% (−79.5 to 114.9)

C
Zi
(3,3) −2.9% (−31.3 to 15.8) −13.6% (−42.0 to 9.1) −12.6% (−80.1 to 91.0)

C
Zi
(4,4) −7.0% (−57.9 to 3.4) −9.3% (−59.4 to 6.9) −6.9% (−83.6 to 102.4)

C
Zi
(1,2) −15.6% (−392.6 to 106.3) −30.0% (−478.0 to 162.8) −50.6% (−305.3 to 376.6)

C
Zi
(1,3) −4.9% (−82.5 to 60.4) −4.7% (−86.4 to 75.6) 9.1% (−85.0 to 138.3)

C
Zi
(1,4) −17.4% (−448.0 to 55.8) −13.8% (−487.6 to 50.1) 61.6% (−378.3 to 1371.9)

C
Zi
(2,3) −10.9% (−306.8 to 110.0) −65.8% (−1102.1 to 87.9) 21.4% (−431.5 to 1338.9)

C
Zi
(2,4) −16.1% (−154.0 to 4.3) −31.2% (−209.0 to 7.5) −361.3% (−88.0 to 4507.4)

C
Zi
(3,4) −13.9% (−188.0 to 123.3) −6.4% (−169.4 to 480.8) −242.3% (−2415.1 to 7859.8)

The results are in agreement with the findings by Bonate [2011, p. 257], that in general
the approximation accuracy is increasing in the following order

Laplacian ≥ FOCE � FO.

In the next section the EM algorithm for NLME models is introduced. Within this
algorithm it is necessary to determine IEβ [Zi] and Varβ [Zi] for all 1 ≤ i ≤ N .
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3. Numerical determination of the Maximum
Likelihood Estimates

ML estimates are parameter values that maximize the likelihood function. In general, for
NLME models there is no closed-form expression of the likelihood function available and
approximations have to be made. Thus, the maximum likelihood estimates are often defined
as the maximizer of some approximated likelihood function.

The Laplacian, FOCE and FO approximation for the p.d.f. pYi given the parameter
β were introduced in the previous section. As already mentioned, in contrast to the FO
method, the Laplacian and the FOCE methods depend on the mode θ̂i(yi;β) of pZi (where
Zi = (Θi|Yi = yi)), which itself depends on β. Therefore, the Laplacian and FOCE
approximation also do not provide a closed-form which could be used to define ML estimates,
see Beal and Sheiner [1998]. For the additive error model—the one which is considered
here—the WSV Varβ [Yij |Θi = θi] = σ2 does not depend on the realization of Θi. Hence,
Vonesh and Chinchilli [1997, p. 345] suggest to apply an iterative approach to derive the
ML estimates, switching back and forth between estimating θ̂i(yi;β) and optimizing pYi

w.r.t. to β until some predefined convergence criterion is met. The algorithm is described in
detail on page 33 (see Algorithm 2). One disadvantage of this relatively simple approach is
the absence of any mathematical proof that the iteration improves the likelihood function
value and even more, convergences to the ML estimates. Under some regularity conditions,
Vonesh [1996] showed that with increasing number of subjects N and increasing numbers
of observations ni for all subjects, the maximizer of the approximated likelihood function
using the Laplacian method β∗LA converges to the maximizer of the likelihood function (the
ML estimate β∗):

(β∗LA − β) = O

(
max

{
1√
N
,

1

min{n1, . . . , nN}

})
where O denotes the Landau symbol.

An alternative, theoretically well–founded iterative approach is presented in the next
section.

3.1. The deterministic EM–Algorithm

In the following chapter an EM algorithm in the context of NLME modeling is presented.
It is based on a deterministic (Laplace) approximation of the integral over the random
effects involved in the likelihood function. To distinguish this approach from Monte Carlo
and stochastic approximations of the integral (Walker [1996]; Kuhn and Lavielle [2005]), we
denote the variant presented here as deterministic EM.
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3.1. The deterministic EM–Algorithm

Algorithm 2 Derivation of the ML estimates based on the Laplacian approximation

Define g(θi) := log pYi|Θi=θi(yi; θi, ϑ, σ
2) + log pΘi(θi; θ,Ω).

Define OFV (β; θ1, . . . , θN ,y) := −
N∑
i=1

(
g(θi) + log

∣∣−∇2
θi
g(θi)

∣∣).
(For θi = θ̂i(yi;β) for all 1 ≤ i ≤ N , OFV corresponds to the Laplacian approximation
of log pY up to a constant.)
Set r = 0.
Choose initial values: β(0) = (θ(0),Ω(0), σ2 (0)).
repeat

Set r = r + 1.
(a) For all i = 1, . . . , N : Estimate θ̂i(yi;β(r−1) := arg min

θi

− g(θi).

(b) Estimate β(r) := arg min
β

OFV
(
β; θ̂1(y1;β(r−1), . . . , θ̂N (yN ;β(r−1)),y

)
.

until Convergence
Results: β̂itLA = β(r).

Dempster et al. [1977] demonstrated that in case the likelihood function L does not have
a close form, but can be expressed as

L(β;y) = pY (y;β) =

∫
pY ,Θ(y,θ;β) dθ,

where Θ = (Θ1, . . . ,ΘN )T and θ = (θ1, . . . , θN )T and with joint p.d.f. pY ,Θ of (Y ,Θ), the
iteration of the

E–Step: Given the parameter β ∈ Υβ , derive the expectation

Q(β′, β) := IEβ
[
log pY ,Θ(y,Z;β′)

]
=

∫
log pY ,Θ(y,θ;β′) pΘ|Y =y(θ;β) dθ, (3.1)

for β′ ∈ Υβ , where Υβ denotes the parameter space of β and Z := (Θ|Y = y),

M–Step: Determine

β̃ = arg max
β′∈Υβ

Q(β′, β). (3.2)

results in a mapping β → β̃ with the following crucial property

L(β̃;y) ≥ L(β;y).

Dempster et al. [1977] denoted the tuple (Y ,Θ) as complete data, where Y represents the
incomplete data and is observed, i.e. Y = y, while Θ is not observed directly and estimated
based on y.

Wu [1983] showed that under some regulatory conditions the sequence of EM iterations
β(0), . . . , β(k) converges to a local maximum of the likelihood function L. I.e., if L(·;y) is
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3. Numerical determination of the Maximum Likelihood Estimates

uni–modal, the sequence converges to the global maximum of L, namely the ML estimate.
Because the uni–modality is difficult to show, different initial values β(0) should be tested to
increase the chance of finding the global maximum of L and to check the robustness of the
algorithm, as suggested in most optimization routines, e.g. see Gilli and Schumann [2010].

Among others, Mentre and Gomeni [1995]; Walker [1996]; Kuhn and Lavielle [2005] pro-
posed an EM algorithms in the context of NLME modeling.

Using that pYi,Θi(yi, θi;β) = pYi|Θi=θi(y; θi, ϑ, σ
2) pΘi(θi; θ,Ω), Equation (3.1) can be

written as

Q(β′, β) =
N∑
i=1

∫ (
log pYi|Θi=θi(yi; θi, ϑ

′, σ2′) + log pΘi(θi; θ
′,Ω′)

)
pZi(θi; θ,Ω) dθi, (3.3)

with Zi = (Θi|Yi = yi).
In the context of NLME modeling, Walker [1996] showed that the E–step can be expressed

as

E–Step: Given the data yi and a parameter β, derive expectations IEβ [Zi] and variances
Varβ [Zi], for all subjects i = 1, . . . , N ,

If the NLME model does not contain fixed effect parameters not associated with a random
effect ϑ, the M–Step can be solved analytically. Accordingly, different EM–like algorithms,
such as proposed by Mentre and Gomeni [1995]; Walker [1996]; Kuhn and Lavielle [2005]
mainly differ in the derivation of the E–step. To this end, Mentre and Gomeni [1995] use
analytical approximations, while Walker [1996]; Kuhn and Lavielle [2005] use stochastic
approximations. Walker [1996] uses the importance sampling method, while Kuhn and
Lavielle [2005] used an MCMC approach. Both stochastic approaches have the advantage to
be more precise if large numbers of iterations in the stochastic approximation step are used.

The M–Step
Under suitable regularity conditions, the following equation has to be fulfilled for β̃ as defined
in Equation (3.2)

∇β′Q(β′, β)
∣∣
β′=β̃

= 0,

with β̃ ∈ Υβ . Again, under suitable regularity conditions, according to Leibniz integral rule
(e.g. see Flanders [1973]), the integration and differentiation can be changed which leads to

N∑
i=1

IEβ
[
∇β′ log pYi,Θi(yi,Zi;β

′)
] ∣∣∣
β′=β̃

= 0. (3.4)

Using Bayes’ theorem (as in Equation (3.3)) the gradients of log pYi,Θi with respect to θ′,
Ω′, ϑ′ and σ2′ are given by:

1. Fixed effects associated with a random effect θ:

∇θ′ log pYi,Θi(yi,Zi;β
′) = ∇θ′ log pΘi(Zi; θ

′,Ω′)

= Ω′
−1

(θ′ −Zi),
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3.1. The deterministic EM–Algorithm

2. Between–subject variability Ω:

∇Ω′ log pYi,Θi(yi,Zi;β
′) = ∇Ω′ log pΘi(Zi; θ

′,Ω′)

=
1

2
Ω′
−1 (−Ω′ + (θ′ −Zi)(θ′ −Zi)T

)
Ω′
−1
,

3. Fixed effects not associated with a random effect ϑ:

∇ϑ′ log pYi,Θi(yi,Zi;β
′) = ∇ϑ′ log pYi|Θi=θ(yi;Zi, ϑ

′, σ2′)

= −∇ϑ′
1

2σ2′

ni∑
j=1

(
yij − f(xij ;Zi, ϑ

′)
)2

≈ −∇ϑ′
1

2σ2′

ni∑
j=1

(
yij − f(xij ;Zi, ϑ

∗)−∇ϑf(xij ;Zi, ϑ
∗)T (ϑ′ − ϑ∗)

)2
=

1

σ2′

ni∑
j=1

∇ϑf(xij ;Zi, ϑ
∗)
(
yij − f(xij ;Zi, ϑ

∗)−∇ϑf(xij ;Zi, ϑ
∗)T (ϑ′ − ϑ∗)

)
,

where f was approximated by its first order linearization w.r.t. ϑ′ at ϑ∗. This lin-
earization is necessary in order to have a closed analytical expression for the M step,

4. Within–subject variability σ2:

∂σ2′ log pYi,Θi(yi,Zi;β
′) = ∂σ2′ log pYi|Θi(yi;Zi, ϑ

′, σ2′)

= − ni

2σ2′ +
1

2σ4′

ni∑
j=1

(
yij − f(xij ;Zi, ϑ

′)
)2
.

Hence, given β and the distribution of Zi (note that distribution of Zi depends on yi and
β), a solution of Equation (3.4) for the single components of β̃ is given by:

1. Fixed effects associated with a random effect:

θ̃ =
1

N

N∑
i=1

IEβ [Zi] ,

2. Between–subject variability:

Ω̃ =
1

N

N∑
i=1

(
Varβ [Zi] +

(
θ̃ − IEβ [Zi]

)(
θ̃ − IEβ [Zi]

)T)
,

where Varβ [Zi] = IEβ
[
Zi Z

T
i

]
− IEβ [Zi] IEβ [Zi]

T was used.

3. Fixed effects not associated with a random effect (ϑ∗ = ϑ):

ϑ̃ =

 N∑
i=1

ni∑
j=1

(
yij − IEβ [f(xij ;Zi, ϑ)] +∇ϑIEβ

[
f(xij ;Zi, ϑ)T

]
ϑ)
)

·

 N∑
i=1

ni∑
j=1

∇ϑIEβ [f(xij ;Zi, ϑ)]∇ϑ IEβ
[
f(xij ;Zi, ϑ)T

]−1

,
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3. Numerical determination of the Maximum Likelihood Estimates

4. Within–subject variability:

σ̃2 =
1

Nn

N∑
i=1

ni∑
j=1

IEβ

[(
yij − f(xij ;Zi;ϑ

′)
)2]

.

As mentioned in Section 2.1, θ and ϑ are both fixed effects and constant within the population
with the difference that θ is associated with a random effect, while ϑ is not. Furthermore, a
NLME model can also be defined based on the alternative parameterization of fixed effects
as described in Equation (2.2). However, from the above description it becomes obvious
that in the context of the EM algorithm the determinations of θ and ϑ differ, which finally
could lead to different results using the alternative parametrization.

In the next paragraph the E–step is presented to derive approximations for the unknown
expectations and variances in the terms above.

The E–Step
Because of the nonlinearity of f , in general, the expectation IEβ [Zi] cannot be derived an-
alytically and stochastic (e.g. see Walker [1996]; Kuhn and Lavielle [2005]) or deterministic
approximations have to be used. In this work, we focus on deterministic approximations. In
context of EM modeling, Mentre and Gomeni [1995] introduced such an algorithm. The E–
step described in the following coincides to the one described by Mentre and Gomeni [1995],
however, it will be derived using the new argumentation of the FOCE method derived in
Section 2.2.3. It should be noted, that the presented M and E–step are independent of each
other, as such, the FOCE based E–step could be replaced by a Laplacian, FO or stochastic
based E–step. The FOCE method was chosen because a reduced computational effort is
expect compared to the Laplacian approximation and a better approximation accuracy is
expected compared to the FO method. Furthermore, the use of the FOCE method instead
of the Laplacian corresponds to using the Fisher instead of the observed Fisher information
to approximate variances of estimators and is therefore more robust to changes in the un-
derlying data, e.g. against outliers. However, as Walker [1996] stated: ”The accuracy of such
approximations is a problem which is hard to evaluate“.

In Section 2.2.3 it was shown that from the FOCE approximation of the likelihood func-
tion it follows that IEβ [Zi] ≈ θ̂i(yi;β) (with θ̂i(yi;β) defined in Equation (2.20)) and
Varβ [Zi] ≈ CZ

FOCE
i (with CZ

FOCE
i defined in Equation (2.24)). For updating the WSV

in the M–Step, the following expectation has to be derived

IEβ

[(
yij − f(xij ;Zi, ϑ

′)
)2]

= y2
ij − 2yijIEβ

[
f(xij ;Zi, ϑ

′)
]

+ IEβ
[
f(xij ;Zi, ϑ

′)2
]
. (3.5)

In general, the distribution of f(xij ;Zi, ϑ
′) is not known due to the nonlinearity of f . How-

ever, for f being continuously differentiable and ∇θif(xij ; θi;ϑ
′) 6= 0, ∀θi ∈ Rp, the distri-

bution can be approximated using the Delta method (e.g. see Lehmann and Romano [2005,
Theorem 11.2.14 and 12.4.1])

f(xij ;Zi, ϑ
′)
approx∼ N

(
f(xij ; θ̂i(yi;β), ϑ′),

∇θif(xij ; θ̂i(yi;β), ϑ′)T CZ
FOCE
i ∇θif(xij ; θ̂i(yi;β), ϑ′)

)
.
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3.1. The deterministic EM–Algorithm

Hence, Equation (3.5) can be approximated by

IEβ

[(
yij − f(xij ;Zi, ϑ

′)
)2] ≈ (yij − f(xij ; θ̂i(yi;β), ϑ′))2

+∇θif(xij ; θ̂i(yi;β), ϑ′)TCZ
FOCE
i ∇θif(xij ; θ̂i(yi;β), ϑ′).

The same considerations applies for updating ϑ.
Finally, a deterministic version of the EM for NLME models is given by

E–Step: Determine EBEs given β = (θ,Ω, ϑ, σ2) for all subjects i = 1, . . . , N :

θ̂i(yi;β) = arg max
θi∈Rp

log pYi|Θi=θi(yi; θi, ϑ, σ
2) + log pΘi(θi; θ,Ω),

and the inverse of the variance–covariance of Zi approximated by CZFOCE
i , see Equa-

tion (2.24).

M–Step: 1. The updated fixed effect associated with a random effect is defined as the
mean of the EBEs

θ̃ =
1

N

N∑
i=1

θ̂i(yi;β).

2. The updated BSV variance–covariance term is defined as the sum of the variance
of the EBEs and the mean of the variances of the EBEs estimators

Ω̃ =
1

N

N∑
i=1

{
(θ̃ − θ̂i(yi;β))(θ̃ − θ̂i(yi;β))T + CZ

FOCE
i

}
.

3. The updated fixed effect not associated with a random effect is given by

ϑ̃ =

N∑
i=1

ni∑
j=1

{
yij − f(xij ; θ̂i(yi;β), ϑ) +∇ϑf(xij ; θ̂i(yi;β), ϑ)Tϑ)

}
N∑
i=1

ni∑
j=1
∇ϑf(xij ; θ̂i(yi;β), ϑ)∇ϑf(xij ; θ̂i(yi;β), ϑ)T

.

4. The updated WSV variance term is given by

σ̃2 =
1

Nn

N∑
i=1

ni∑
j=1

{(
yij − f(xij ; θ̂i(yi;β), ϑ̃)

)2

+
(
∇θif(xij ; θ̂i(yi;β), ϑ̃)T

)
CZ

FOCE
i

(
∇θif(xij ; θ̂i(yi;β), ϑ̃)

)}
,

which corresponds to a composition of the average residuals and variance in model
predictions.
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3. Numerical determination of the Maximum Likelihood Estimates

The iterative algorithm on page 33 (Algorithm 2) for the determination of the ML es-
timates based on the Laplacian and FOCE approximation consists of two numerical opti-
mization steps, while in the EM algorithm presented above only one numerical optimization
in the E–step is needed. Furthermore, the EM approach theoretically guarantees that the
overall likelihood will—at least—not decrease after each iteration, e.g. see Wu [1983]. The
principle of the algorithm is illustrated in Figure 3.1. Finally, for the practical application of
the presented EM algorithm a stopping criterion of the algorithm as depicted in Figure 3.1
has to be defined.

Figure 3.1.: Schematic work process of the EM algorithm. In the r-th step of the algorithm, the E–
step will derive ’posterior’ distributions of (Θi|Yi = yi) for all individuals given ’prior’ information
β(r−1). Based on these, the M–step updates the ’prior’ β(r−1) → β(r), which is the input for the
(r + 1)-th step.

For example, one of the following stopping criteria could be used

1. The final estimates are defined as those values, where changes in the parameter values
become sufficiently small between two EM iterations:

For some predefined δ > 0 :
∣∣∣β(r) − β(r−1)

∣∣∣ ≤ δ,
where for x ∈ Rp, the notation |x| ≤ δ means, that for every component of x it is
|xk| ≤ δ, for k = 1, . . . , p.

2. The final estimates are defined as those values, when changes in a predefined value,
e.g. the approximated likelihood function value L̃, become sufficiently small between
two EM iterations:

For some predefined δ > 0 :
∣∣∣L̃(βr)− L̃(βr−1)

∣∣∣ ≤ δ.
3. The performance of the algorithm is monitored and on a subjective basis it is decide

when an adequate convergence status is reached, for example this could be based on
only one specific parameter with largest interest.

Independent of the used stopping criterion, the results should be reviewed using diag-
nostics tools like the ones which were introduced in the Examples 3.3.6, 3.3.5, such as
goodness–of–fits (GOFs) plots and visual predictive checks (VPCs).
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3.2. Precision of EM estimates

3.2. Precision of EM estimates

The precision of an estimate, quantified by the estimated standard error (SE), is usually de-
fined using the Cramér-Rao bound as an approximation to the variance of the corresponding
estimator, for more details see for example Newey and McFadden [1994] or Lehmann and
Romano [2005, sec. 12.4.1]. In general, for a NLME model the derivation of the Fisher and
also observed Fisher matrix (see [Efron and Hinkley, 1978]) is rather complex because no
closed-form expression of the likelihood function exists.

So far, it has not be shown how to derive the expected Fisher information for NLME
estimates. Walker [1996] and Guo and Thompson [1994] derived the observed Fisher matrix
using stochastic integration. Based on their work, we will describe a method to determine
an estimate of the observed Fisher information IY in the context of NLME modeling

ÎY (β) = −∇2
β log pY (y;β). (3.6)

We will extend the derivation by Walker [1996] and Guo and Thompson [1994] and will also
consider fixed effects not associated with random effects. Parts of this formula cannot be
expressed as closed-form and have to be approximated using either stochastic or analytical
approximations.

An equivalent representation of Equation (3.6) is given by the so–called Louis’ formula
(missing information principle), see Louis [1982] and the Appendix 8, page 126 for details,

ÎY (β) = IEβ
[
−∇2

β log pY ,Θ(y,Z;β)
]

−Varβ
[
∇β log pY ,Θ(y,Z;β)

]
, (3.7)

with Z := (Θ|Y = y). The first derivatives of log pY ,Θ have already been derived in
Section 3.1, the second derivatives are relatively easy to obtain and an approximation of the
distribution of Zi was derived in the E–step (as demonstrated in Section 3.1). Because of
the independence of (Yi,Θi) and (Yj ,Θj), for i 6= j, we have

pZ(θ;y, β) = pΘ|Y =y(θ;y, β) =
pY ,Θ(y,θ;β)

pY (y;β)

=

N∏
i=1

pYi,Θi(yi, θi;β)

N∏
i=1

pYi(yi;β)

=
N∏
i=1

pΘi|Yi=yi(θi;yi, β) =
N∏
i=1

pZi(θi;yi, β),

for θ = (θ1, . . . , θN )T , θi ∈ Rp for 1 ≤ i ≤ N .
Thus, given the final estimates of the EM algorithm β̂ = (θ̂, Ω̂, ϑ̂, σ̂2), the first derivatives

of log pY ,Θ are given or can be approximated by (see page 34)

• a = ∇θ log pY ,Θ(y,Z;β) = Ω−1
N∑
i=1

(θ −Zi),

• b = ∇Ω log pY ,Θ(y,Z;β) = 1
2Ω−1

N∑
i=1

(
−Ω + (θ −Zi)(θ −Zi)T

)
Ω−1,
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3. Example: The EM–Algorithm

• c = ∇ϑ log pY ,Θ(y,Z;β) ≈ 1
σ2

N∑
i=1

ni∑
j=1
∇ϑf(xij ; θ̂i(yi;β), ϑ̂)

·
(
yij − f(xij ; θ̂i(yi;β), ϑ̂)−∇ϑf(xij ; θ̂i(yi;β), ϑ̂)T (ϑ− ϑ̂)

)
, where θ̂i(yi;β) was de-

fined in Equation (2.20),

• d = ∇σ2 log pY ,Θ(y,Z;β) = − Nn
2σ2 + 1

2σ4

N∑
i=1

ni∑
j=1

(yij − f(xij ;Zi, ϑ))2.

The Hessian given by Walker [1996] is extended by the fixed effects not associated with
random effects ϑ

−∇2
β log pY ,Θ(y,Z;β) =


A AB 0 0

ABT B 0 0
0 0 C 0
0 0 0 D

 ,

with

• A = ∂2

∂θ2
log pY ,Θ(y,Z;β) = NΩ−1,

• (AB)qr =
(

∂2

∂Ω∂θ log pY ,Θ(y,Z;β)
)
qr

= 1
T
q Ω−1

(
∂
∂Ωr

Ω
)

Ω−1
N∑
i=1

(Zi − θ), for 1 ≤ q ≤

p, 1 ≤ r ≤ p2, where 1q denotes the q-th column of the p×p identity matrix, p denotes
the number of random effects and Ωr the r-th entry of Ω in the sense that Ω1 = Ω(1,1),
Ω2 = Ω(1,2), . . . ,Ωp+1 = Ω2,1,. . . ,Ωp2 = Ω(p,p).

• Bqr = 1
2 trace

(
Ω−1

(
∂
∂Ωq

Ω
) N∑
i=1

[2 (Zi − θ) (Zi − θ)− Ω] Ω−1
(

∂
∂Ωr

Ω
))

for 1 ≤ q, r ≤

p2,

• C = − ∂2

∂ϑ2
log pY ,Θ(y,Z;β) = − 1

σ2′

N∑
i=1

ni∑
j=1
∇ϑf(xij ; θ̂i(yi;β), ϑ̂)∇ϑf(xij ; θ̂i(yi;β), ϑ̂)T ,

• D = − Nn
2σ4 + 1

2σ6

N∑
i=1

ni∑
j=1

(
yij − f(xij ;Zi, ϑ̂)

)2
.

Because A, c and C are independent of Zi, the respective expectation values are constant
(with variance 0). All remaining terms depend on Zi. As a matter of fact the terms b, d,
AB, B and D are nonlinear functions of Zi, such that the corresponding expectation and
variance in Equation (3.7) cannot be derived analytically and further approximations have
to be used.

To avoid further linearization and because this step is only performed once at the end of
the algorithm, we recommend to use a stochastic integration method as proposed by Guo and
Thompson [1994] to derive the distributions of a, b, d, A, AB, C and D. For simplification,
we further recommend to use the approximated distribution of Zi derived in Section 2.2.3,
although MCMC methods can be used to derive the distribution of Zi more precisely.
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3.3. Example: The EM–Algorithm—Classical Population Analysis of Levofloxacin Plasma Data

3.3. Example: The EM–Algorithm —Classical Population
Analysis of Levofloxacin Plasma Data

To exemplify NLME modeling and the deterministic EM algorithm, the levofloxacin dataset
as described in the next Section 3.3.1 is used. A brief description of the drug levofloxacin
is given later in Section 5.1. Prior to the NLME analysis, we briefly present two alternative
and simple methods, namely the naive pooling and the two–stage approach, to analysis the
data. The mathematical background of both approaches is described in the Appendix 9
(see page 128 and page 129). Due to their simplicity, both methods are occasionally used
for the estimation of parameters in the PBPK context. For example, the naive pooling is
used for parameter estimation in the PBPK context if the study population is assumed to
be very homogenous and only few PK samples are available per individual, e.g. as in many
preclinical studies (Tsamandouras et al. [2013]). On the other hand, if dense individual PK
profiles are available, the data is often analysed on the individual level only—representing
one part of the two–stage approach, e.g. see Levitt and Schnider [2005]. The performance of
the naive pooling, two–stage and NLME approach will be compared based on the analysis
of the levofloxacin study and a simulations & estimation study.

The optimization in the naive pooling, the two–stage and the E–step of the EM algorithm
was performed using the optimization package ucminf (Nielsen and Mortensen [2012]).

3.3.1. Levofloxacin Dataset

The NLME approach will be illustrated based on the analysis of PK data of levofloxacin
which was collected in four studies conducted by Prof. Markus Zeitlinger from the Med-
ical University of Vienna, Austria (Zeitlinger et al. [2003, 2007]; Bellmann et al. [2004]).
Levofloxacin was measured in plasma, muscle and adipose ISF tissue, the latter two were
obtained by microdialysis. All studies were single dose studies with 12, 30 and 60 minutes
intravenous (i.v.) infusion of 500 mg levofloxacin. Furthermore, several patients covariates
were collected: age, sex, body height, body weight, albumin concentration in plasma and
the hematocrit value.

For our purpose only those patients were included in the analysis for whom information
about the patient’s sex, body height and body weight was provided. The resulting dataset
consisted of 24 patients, 19 male and 5 female with a total of 293 plasma (total drug) samples
(9 to 14 samples per subject), 193 adipose tissue samples from 19 patients (6 to 12 samples
per subject) and 181 muscle tissue samples from 18 patients (6 to 12 samples per subject).
The median age was 62 years, with a range of 44 to 80 years.

3.3.2. The structural model

The raw data of the plasma PK data is shown in Figure 3.2. The visual assessment of
the raw data strongly suggest that the pharmacokinetics of levofloxacin follow a bi–phasic
kinetic with a fast distribution phase within the first two hours, followed by a slower elimi-
nation phase. Thus, we chose a two compartment model as structural model to describe the
pharmacokinetics of levofloxacin. This is in line with previous investigation of the plasma
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3. Example: The EM–Algorithm

PK of levofloxacin, e.g. see Fish and Chow [1997].
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Figure 3.2.: Plasma PK measurements of N = 24 subjects for linear (left) and log–scale (right):
Black circles (1 subject), gray (19 subjects) and black crosses (4 subjects) show observations following
12, 30 and 60 minutes infusion, respectively. The red solid line shows median of measurements from
the 19 subjects with 30 minutes infusion.

A schematic illustration of a two compartment model is shown in Figure 3.3. The ODE
system describing the rate of change of the amounts A1 and A2 in the central and peripheral
compartment is given by

dA1(t)

dt
= −k12A1(t) + k21A2(t)− k10A1(t) + r(t)

dA2(t)

dt
= +k12A1(t)− k21A2(t) (3.8)

with exchange- and elimination rate constants k12 = Q /V1, k21 = Q /V2 and k10 = Cl /V1,
and infusion rate r(t), given as r(t) = dose/Tinf for t ≤ Tinf and r(t) = 0 for t > Tinf , where
Tinf > 0 denotes the infusion duration. The parameters Cl, V1, V2 and Q denote the clear-
ance, the apparent volumes of distributions of the central and the peripheral compartment
and the inter–compartmental clearance, respectively. The system of ODEs in Equation 3.8
can be solved analytically, e.g. see Dubois et al. [2011]. The drug concentration in the central
compartment represents the plasma concentration. Thus, the structural model is given by
f(xi; θi) := C1(t) = A1(t)/V1.

Because, PK parameters Cl, V1, Q and V2 and can only take positive values, a log–
transformation is applied and the following parametrization for f is used

θi = (log Cli, log V1i, log Qi, log V2i)
T ,

with V1, V2 in unit L and Q, Cl in unit L/h. The independent variable xi consists of the in-
dividual dose administered, the infusion duration and the sampling time points ti 1, . . . , ti ni .

3.3.3. The Within–Subject Variability Model

The WSV is assumed to be proportional to the predicted concentrations. Following the con-
siderations described in Section 1.2 the log–transformed measurements log(yi) are assumed
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3.3. Example: Naive Pooling

Figure 3.3.: Schematic representation of a two compartment model: central compartment represents
the dosing and observation compartment—e.g. the plasma—from where the drug is eliminated, the
peripheral compartment represents sub-part of the body with different kinetics as the central compart-
ment.

to be realizations of the random variable Yi defined by

Yi = log f(xi; θi) + εi, εi ∼ Nni
(
0, Iniσ

2
)
,

with σ2 > 0.

3.3.4. The Between–Subject Variability Model

The BSV is characterized by

Θi ∼ N4 (θ,Ω) ,

with θ = (log Cl, log V1, log Q, log V2)T ∈ R4 and Ω ∈ R4×4
>0 . Due to the log–transformation,

the parameters Cl, V1, Q and V2 are log–normally distributed which is a widely used
assumption, see Karlsson et al. [1998].

3.3.5. The Naive Pooling Approach

Under the assumption of an additive error for the log–transformed data, the objective func-
tion of the naive pooling analysis is given by

OFVNP(θ;y1, . . . ,yN ) =

N∑
i=1

ni∑
j=1

(log yij − log f(xij ; θ))
2 ,

where OFV denotes the objective funtion value (OFV). The estimates are defined as

θ̂NP = arg min
θ∈Rp

OFV (θ;y1, . . . ,yN ) and σ̂2
NP =

OFV
(
θ̂NP;y1, . . . ,yN

)
Nn

.

For a successful optimization the choice of initial values θ(0)
i is important and usually different

initial values should be tested, see Bonate [2011, p. 114]. For levofloxacin we could extract
values for clearance (8.64 L/h to 13.56 L/h) and total volume of distribution (= V1 + V2)
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3. Example: The EM–Algorithm

(89 L to 112 L) from Fish and Chow [1997]. For the regression analysis the respective log-
values of 20 L, 80 L, 10 L/h and 30 L/h are chosen as initial values for log V1, log V2, log Cl
and log Q, respectively. Thereby, the choice for log V1, log V2 and log Q is partly arbitrary.

The results of the naive pooling approach are displayed in Table 3.1. Per definition, the
naive pooling approach does not provide information about BSV. As a consequence, the
WSV estimate covers both sources of variability–within and between subject variability.

Table 3.1.: Results of the naive pooling approach, WSV expressed as CV.

Cl V1 Q V2

exp θ̂ 8.3 L/h 17.5 L 82.8 L/h 72.3 L

WSV 29.0 %

The GOF plots are shown in Figure 3.4 and indicate that the naive pooling approach
adequately describes the pooled data.
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Figure 3.4.: Goodness of fit plots of the naive pooling analysis: Upper plot shows observations
against the predictions (Pred). In the upper graphs, solid black line represents the identity line
and red dashed line represent a smoothing spline. Lower left plot shows the empirical density of
the residuals, the red line indicates the estimated density of the WSV. Lower right plots shows the
residuals over time, red line shows the median of the residuals for each time point.
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3.3.6. The Two–Stage Approach

In the first step the individual ML estimate θ̂i(yi) is determined for all subjects 1 ≤ i ≤ N

θ̂i(yi) = arg min
θi∈Rp

ni∑
j=1

(log yij − log f(xij ; θi))
2

︸ ︷︷ ︸
=:OFVTS(θi;yi)

.

The same initial values as for the naive pooling approach (Section 3.3.5) were used. The
individual residual variance is given by σ̂i(yi, θ̂i(yi)) = OFVTS(θ̂i(yi);yi)/ni.

The results of the second stage are stated in Table 3.2. The sample means of the parameter
estimates are in a reasonable magnitude of order and in line with literature values. The
variance of the BSV is defined as the diagonals of Ω̂. The WSV was estimated to be 8.0 %
(CV).

Table 3.2.: Results of the two–stage analysis: Sample mean and range of individual parameters,
BSV and WSV expressed as CV (e.g. CV% (Cl) = 100 ·

√
eω

2
log Cl − 1).

Cl V1 Q V2

exp θ̂ 7.9 L/h 19.8 L 61.5 L/h 69.0 L

Range of exp θ̂i 3.9–11.5 L/h 7.2–60.2 L 20.6–473.8 L/h 27.2–122.6 L

BSV 30.6 % 64.8 % 71.0 % 42.8 %

WSV 8.0 %
Range 3.6–16.5 %

The small WSV can also be observed in the GOF plots, see Figure 3.5. Observations
and individual predictions are in good agreement, furthermore the model does not tend to a
systematical under– or over–prediction. The residuals are symmetrically distributed around
0, relatively constant over the observation period. Please note, that only few observations
are available for t ≥ 12 h—approximately 6 per time point.

In conclusion, the two–stage approach is able to describe the individual observed profiles
very adequately. However, the range of the individual estimates is noticeably broad, partic-
ularly in Q with minimal and maximal deviation from the population mean of −66.5 % and
670 %, respectively.

3.3.7. The NLME Approach

As initial values for the deterministic EM algorithm for the fixed effects the values were
chosen according to the description in Section 3.3.5, for the BSV for all parameters a value
of CV% 30 and for the WSV a value of CV% 10 was chosen. As convergence criterion of
the EM algorithm three significant digits in the fixed effects were chosen; only the fixed
effects were considered to save computational time and because they were considered to be
the most relevant parameters.

Figure 3.6 illustrates how the EM algorithm works in case the initial values are determined
from the two–stage analysis: In general, the two–approach over-estimates the BSV and
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Figure 3.5.: Goodness of fit plots of the two–stage analysis: Upper left plot shows observations
against the individual predictions (IPred), upper right plot shows observations against the predictions
based on the population mean θ̂ (Pred). In the upper graphs, solid black line represents the identity
line and red dashed line represent a smoothing spline. For both plots apply: the closer the black and
the red lines are, the better. Lower left plot shows the empirical density of the residuals, the red line
indicates the estimated density of the WSV. Lower right plots shows the residuals over time, red line
shows the median of the residuals for each time point.

under-estimates the WSV, the EM algorithm adjusts WSV and BSV estimates until an
equilibrium between both sources of variability is reached.

The results of the EM algorithm are displayed in Table 3.3. In addition to the parameter
estimates, the so–called η– and ε–shrinkage in percentage for the variance estimates are
provided.

Shrinkage
The shrinkage estimate of a variance term—η for a BSV, and ε for WSV—indicates whether
the information in the underlying data is sufficient to determine individual estimates for
that parameter. The shrinkage estimates are defined as (Savic and Karlsson [2009])

η−shr(Ω̂k,k) :=

1− Ŝd ((θ1(y1;β), . . . , θN (yN ;β))k)√
Ω̂k,k

 ,

ε− shr(σ̂2) :=

(
1− Ŝd (ε̂11, . . . , ε̂NnN )√

σ̂2

)
, (3.9)
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Figure 3.6.: Exemplified performance of the EM algorithm for levofloxacin if parameters determined
from the two–stage approach are used as initial values: The three lines show how the OFV (crosses
and solid line), the product of the BSVs terms (asterix and dotted line) and the WSV (triangles and
dashed line) evolve over the iterations.

with (θ1(y1;β), . . . , θN (yN ;β))k denoting the k-th entry of each EBE, Ω̂k,k denoting the k-
th diagonal entry of Ω̂, ε̂ij := yij − f(xij ; θ̂i(yi;β)) denoting the residuals of the individual
model predictions and observations and Ŝd denotes the sample standard deviation. Please
note, the above definition only holds true for an additive error model. For more details see
Savic and Karlsson [2009]. The above definition is commonly used in applied pharmaco-
metric analysis, however in statistics, typically the variance is used instead of the standard
deviation, see Lavielle and Ribba [2016] or Xu et al. [2012]. This is motivated by the con-
sideration that the estimate of the population variance (Ω) is composed of the (explained)
variance of the EBEs θ1(y1;β), . . . , θN (yN ;β) and of the (unexplained) variance Varβ [Zi],
where the later is assumed to be orthogonal (uncorrelated).

The η–shrinkage is an indicator whether conclusion based on the EBEs are reliably, such
as ”the distribution of the individual parameters and/or the correlation structure of the ran-
dom effects“ (Lavielle and Ribba [2016]). From the definition of the shrinkage it is obvious,
that an optimal value would be close to 0 and that theoretically, if the BSV is estimated
using the presented EM algorithm, negative values are not possible. According to Savic
and Karlsson [2009], shrinkage values in the magnitude up to 30 % are acceptable. Large
shrinkage values are typically observed if only uninformative observations (w.r.t. to the pa-
rameter) for the majority of subjects are available and the associated EBEs shrink towards
the population value.

For the underlying model the shrinkage estimates are all below 30 %. This indicates that
the information contained in the data is sufficient to reliably determine EBEs for all random
effects parameters.

The GOF plots indicate an adequate description of the data, see Figure 3.7. The com-
parison of the empirical distribution of the residuals and the respective density of the WSV
reveals a slight over-prediction of the WSV, as already indicated by the ε-shrinkage value.
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Table 3.3.: Results of the classical population PK analysis using the deterministic EM algorithm:
Typical population parameters and range of EBEs are presented on the original scale (e.g. Cl =

elog Cl), BSV and WSV are expressed as CV (e.g. CV% (Cl) = 100 ·
√
eω

2
log Cl − 1).

Cl V1 Q V2

Typical value exp θ̂ 8.1 L/h 19.9 L 65.0 L/h 69.2 L

Range of exp θ̂i 4.2–11.4 L/h 10.9–39.3 L 25.2–214.7 L/h 31.6–110.7 L

BSV 27.3 % 46.3 % 38.5 % 54.3 %
η-shrinkage 0.6 % 8.1 % 0.6 % 2.2 %

WSV 9.9 %
ε-shrinkage 17.8 %

OFV −286.5
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Figure 3.7.: Goodness of fit plots of NLME analysis: Upper left plot shows observations against
the individual predictions (IPred), upper right plot shows observations against the predictions based
on the population mean θ̂ (Pred). In the upper graphs, solid line represents the identity line and red
dashed line represent a smoothing spline. Lower left plot shows the empirical density of the residuals
(with empirical density is meant, that the empirical frequency distribution is scaled in a way that the
histogram has an area of one), the red line indicates the estimated density of the WSV. Lower right
plots shows the residuals over time, red line shows the median of the residuals for each time point.
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3.3. Example: Naive Pooling

A further diagnostic tool, to examine whether the estimated variability terms are in the
correct order of magnitude is given by the so–called VPC.

The VPC
The purpose of the VPC is to visually check how well the model performs, in particular how
well the overall variability is captured by the model, e.g. see Karlsson et al. [1998]. This
diagnostic tool is created in the following procedure: with the final model estimates, PK
observations are simulated nsim times with the underlying study design. For the original
study, as well as for every simulated study all measurements associated with one time point
or predefined time interval, so–called bins, are binned together. For each bin, quantiles (e.g.
10th, 50th and 90th) of all measurements within the bin are estimated. Thus, for each time
point or interval of the original study and each of the pre-defined quantiles one estimate
is available, while for the simulated studies nsim estimates of the quantiles are generated.
The estimates of the simulated studies are summarized using median and 5th and 95th. The
resulting statistics are visually compared with the quantiles of the original study. A more
detailed description is presented in the Algorithm 3 on page 49.

In the best case, the observed quantiles lie within the 5th− 95th interval of the simulated
quantiles indicating an adequate choice of the structural and random effects model as well
as adequate parameter estimates.

Algorithm 3 Create a VPC
Define number of virtual studies to be simulated nsim.
Define n binning points/intervals {(t1,l, t1,u), . . . , (tn,l, tn,u)} (l=lower, u=upper).
Based on subjects EBEs, individual predictions are determined for planned (plan) and
actual (act) dosing. For the VPC the dose–corrected observations yi(plan) = yi(act) ·
f(plan)/f(act) are used.
For the original study, estimate quantiles of all (dose–corrected) observations y(t) with
tj,l ≤ t < tj,u, where t are the associated measurements times, allocate the time tj :=
median(t; tj,l ≤ t < tj,u) to the estimated quantile, for each bin 1 ≤ j ≤ n.
Set r = 0
repeat

Set r = r + 1.
Sample parameters from the estimated parameter distributions for each individual.
Simulate predictions for each individual based on the sampled parameter.
Sample residuals and generate simulated measurements.
For the resulting rth simulated study, estimate quantiles of simulated y(t) with
tj,l ≤ t < tj,u, where t are the associated measurements times, allocate the
time tj := median(t; tj,l ≤ t < tj,u) to the estimated quantile, for 1 ≤ j ≤ n.

until r = nsim
for 1 ≤ j ≤ n do

Estimate prediction intervals (e.g. 5th − 95th) for all quantiles for each bin.
end for

For some design parameters, e.g. absolute amount of drug administered, observations and
predictions can be normalized w.r.t. the respective design variable and normalized VPC can
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3. Example: The EM–Algorithm

be created as done for underlying levofloxacin population PK analysis.
The bins should be defined, such that the prediction curve does not change signifi-

cantly within each bin. In addition, each interval should contain a sufficient number of
measurements—from different subjects—so that quantiles can be estimated robustly, e.g. it
is not reasonable to estimate the 5th and 95th quantiles of less than 20 measurements. In
this case either smaller quantile ranges should be chosen, e.g. 10th and 90th, or the binning
interval has to be adjusted if possible.

The VPC for the levofloxacin analysis is shown in Figure 3.8. For all time points median,
10th and 90th quantile of the observations lie in the respective prediction interval of the
simulated quantiles. This indicates a good agreement of the estimated typical profile and
the median observations, as well as for the estimated and observed variability. Howsoever,
for t ≥ 12 h the prediction interval increases due to the low number of samples within each
bin (on average 6), which makes it difficult to assess whether the variability in the later
phase is correctly captured or slightly overestimated by the model.

In summary, the GOF plots and the VPC show that the model adequately describes the
data. Furthermore, the estimates are in good agreement with the results obtain by Fish
and Chow [1997], who reported a total volume of distribution between 89 L to 112 L and a
clearance between 8.6 L/h to 13.56 L/h, whereas in the current analysis values of 89.1 L and
8.1 L/h were estimated.

3.3.8. Comparison of Naive Pooling, Two–Stage and NLME (using the
deterministic EM algorithm) approach

In this section the naive pooling, two–stage and NLME approach are compared with each
other on the basis of the levofloxacin study. Therefore, a simulation & estimation study
was conducted using the final parameters estimates of the classical levofloxacin population
PK analysis presented in the previous section. In total, nsim = 100 studies were simulated.
For each simulated study, 24 (number of subjects) parameter vectors were sampled from
the distribution estimated in Section 3.3.7. Based on the sampled parameter values, lev-
ofloxacin concentration for the given sampling time points were simulated. These simulated
concentrations were transformed to simulated observations by adding a randomly sampled
residual error. Each trial was analysed using naive pooling, two–stage and NLME approach.
For each method, relative bias (relBias) and relative root mean squarred error (RSME) was
estimated based on the results of the nsim analyses

relBias :=
1

nsim

nsim∑
l=1

(
β̂l − β0

β0

)
,

relRMSE :=

√√√√ 1

nsim

nsim∑
l=1

(
β̂l − β0

β0

)2

, (3.10)

where for the l-th study, β̂l represents the estimated parameter value and β0 is the respective
known input parameter. The results are displayed in Table 3.4

For the underlying situation, a small study population with dense and balanced sampling,
the deterministic EM provides the less biased estimates compared to the naive pooling and
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Figure 3.8.: VPC for the classical population PK analysis for linear (top) and log–scale (bottom):
The black bars and dots show the 10th, 90th and the 50th (the median) quantiles of the observations
for each time point. The numbers above each bar specifies the underlying number of observations
at this time point. The blue shaded area shows the 95th error band around the 5th and the 95th

quantiles of the simulated measurements, the red area shows the 95th error band of the median of
the simulated measurements. The dotted blue line shows the upper and lower range of the prediction
interval of the 10th and 90th quantiles.

two–stage approach. In particular, for the random effect terms the deterministic EM algo-
rithm outperform the two–stage approach, while the naive pooling approach per definition
does not provide estimates for BSV. As expected, in average the two–stage approach overes-
timates the BSV and underestimates the WSV, with a relative large variability represented
by the relative root–mean–square error. This is in line with previous findings by Sheiner
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3. Example: The EM–Algorithm

Table 3.4.: Comparison of naive pooling, two–stage and NLME (deterministic EM) approach based
on relative bias and relative RMSE (in brackets) of the results of the simulation & estimation study.

Naive Pooling Two–Stage deterministic EM

typical value Cl 5.5 % (8.9) −2.7 % (9.2) −1.3 % (5.9)
typical value V1 6.1 % (14.2) −8.2 % (14.0) −0.8 % (9.8)
typical value Q 12.3 % (19.9) −2.0 % (13.6) 1.5 % (11.9)
typical value V2 3.7 % (9.2) 0.6 % (8.1) 0.8 % (7.5)

BSV Cl na 166.2 % (851.6) −3.1 % (15.7)
BSV V1 na 54.9 % (85.0) −8.6 % (22.4)
BSV Q na 29.1 % (57.6) −3.1 % (19.6)
BSV V2 na 7.8 % (28.4) −4.1 % (18.3)

WSV na −18.2 % (18.6) −0.6 % (4.8)

and Beal [1980] that the “two–stage approach produce good estimates of mean kinetics, but
biased and imprecise estimates of inter-individual variability”.

A main disadvantage of the naive pooling approach is the missing ability to differentiate
between different sources of variability. Moreover, assuming that PK varies between pa-
tients, “the method violates the assumption of independence in the residuals, as it is likely
that observations within an individual are correlated“ (Bonate [2005]). This validity of the
assumption is illustrated for the underlying analyses in Figure 3.9. For each subject the
mean of the residuals was estimated

ε̄i(θi) :=
1

ni

ni∑
j=1

(f(xij ; θi)− yij),

for θi ∈ {θ̂NP, θ̂i(yi), θ̂i(yi;β)} and for 1 ≤ i ≤ N , where θ̂NP denotes the estimate result-
ing from the naive pooling approach and θ̂i(yi) and θ̂i(yi;β) are the individual estimates
from two–stage and NLME analysis, respectively. For the two–stage and even more so for
the NLME approach the average residuals are close to zero, fitting the assumptions that
IE [εi] = 0. For the naive pooling approach it seems natural, that for some subjects the
associated PK profiles are either entirely over– or under–predicted.

For the underlying example, the above comparison demonstrates the main disadvantages
of naive pooling and two–stage and the strengths of the NLME approaches: the deterministic
EM produces nearly unbiased estimates with a slight tendency to underestimate the BSV,
the two–stage approach generates biased estimates of the random effects parameters (in
general, overestimates BSV and underestimates the WSV), while using the naive pooling
approach no BSV can be determined.
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Figure 3.9.: Comparison of the average individual residuals of naive pooling (grey diamonds), two–
stage (blue dots) and NLME approach (red circles) for each of the 24 subjects.

3.3.9. Evaluation of the deterministic EM algorithm

In this section the efficiency of the deterministic EM algorithm described in Section 3.1 is
examined and compared to the SAEM algorithm by Kuhn and Lavielle [2005], implemented
in R (package saemix Comets et al. [2011]). In a first step, the analysis presented in Sec-
tion 3.3 is repeated using the SAEM algorithm. The parameter estimates are compared with
the results presented in Section 3.3 in Table 3.5.

Table 3.5.: Comparison of the results of the classical population PK analysis of levofloxacin using
the deterministic EM (detEM) and SAEM algorithm: Typical values are presented on original scale
(e.g. Cl = elog Cl), BSV and WSV are expressed as CV (e.g. CV% (Cl) = 100 ·

√
eω

2
log Cl − 1).

Cl V1 Q V2

typical value SAEM 8.0 L/h 19.6 L 63.8 L/h 69.4 L
typical value detEM 8.1 L/h 19.9 L 65.0 L/h 69.2 L
relative differences 1.4 % 1.8 % 1.9 % −0.3 %

BSV SAEM 28.5 % 51.2 % 61.6 % 40.3 %
BSV detEM 27.3 % 46.3 % 54.3 % 38.5 %
relative differences −4.2 % −9.6 % −11.8 % −4.3 %

WSV SAEM 9.2 %
WSV detEM 9.9 %
relative differences 7.3 %

The parameter estimates of both algorithms are in good agreement with less than 2 %
deviation for the fixed effects estimates and deviation of approximately −4 % to 12 % for the
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3. Example: The EM–Algorithm

random effects. The computational time was approximately 22 s and 95 s for the determin-
istic EM and the SAEM algorithm, respectively, while we aimed for as similar conditions as
possible for both algorithms.

To confirm these results in a broader setting, a simulation & estimation study was con-
ducted as described in the previous Section 3.3.8 for two scenarios:

(S1) random effects on all PK parameters, i.e. θ ∈ R4 and Ω ∈ R4×4
>0 ,

(S2) random effects only on Cl and V2, i.e. θ ∈ R2, Ω ∈ R2×2
>0 and ϑ ∈ R2.

For scenario (S2) the same multivariate distribution for Cl and V2 as in (S1) was used. Each
simulated study was analysed using the deterministic EM and the SAEM algorithm with
identical initial values. For each algorithm, relative bias and relative RSME was estimated
based on the results of the nsim analyses, see Equation (3.10).

The results are displayed in Tables 3.6 and 3.7. For the underlying problem—dense sam-
pling in a small study population and relatively simple model structure (in terms of structural
and random effects model)—both EM algorithms perform sufficiently well in reproducing
in average nearly unbiased estimates with acceptable root–mean–square error. The SAEM
algorithm performs slightly better, especially for the random effects terms compared to the
deterministic EM algorithm. Similar observations were made by Johansson et al. [2014],
where a broader setting of situations was investigated and in average the random effects
were underestimated by the deterministic methods (FOCE, Laplacian).

Table 3.6.: Comparison of the deterministic EM and SAEM algorithm based on relative bias and
relative RMSE (in brackets) of the results of the simulation & estimation study S1 with random
effects on all four parameters.

SAEM deterministic EM

typical value Cl −0.3 % (5.5) 1.3 % (5.9)
typical value V1 2.6 % (10.0) −0.8 % (9.8)
typical value Q −1.6 % (11.7) 1.5 % (11.9)
typical value V2 0.4 % (7.5) 0.8 % (7.5)

BSV Cl −2.4 % (15.8) −3.1 % (15.7)
BSV V1 −1.6 % (21.0) −8.6 % (22.4)
BSV Q 0.2 % (20.3) −3.1 % (29.6)
BSV V2 −2.9 % (19.2) −4.1 % (18.3)

WSV −0.02 % (6.3) −0.6 % (4.8)

Because the ML estimator β̂ is asymptotically unbiased, the mean squarred error (MSE)
defined as

MSE(β̂) := IEβ

[
(β̂ − β)2

]
= Varβ

[
β̂
]

+ Bias2(β̂)

converges towards Varβ

[
β̂
]
for nsim → ∞, e.g. see Lehmann and Romano [2005, Section

12.4.1]. Using the saemix package, estimates for the variance of β̂ were determined. Hence, as

54



3.3. Example: Naive Pooling

Table 3.7.: Comparison of the deterministic EM and SAEM algorithm based on relative bias and
relative RMSE (in brackets) of the results of the simulation & estimation study S2 with random
effects only on Cl and V2.

SAEM deterministic EM

typical value Cl 0.2 % (6.0) 1.0 % (6.1)
typical value V1 0.1 % (4.0) −1.7 % (4.1)
typical value Q 0.3 % (2.8) 1.0 % (3.0)
typical value V2 −0.6 % (8.4) −0.7 % (8.2)

BSV Cl −5.1 % (17.6) −5.9 % (17.6)
BSV V2 −4.8 % (15.9) −6.3 % (16.0)

WSV 0.01 % (4.2) 0.1 % (4.2)

a consistency check, the relative RSME and the relative standard error (RSE) obtained from
the saemix package were compared for the untransformed parameter estimates in Table 3.8.
The values are in a good agreement considering the relatively small size of the simulation
& estimation study of nsim = 100. Concludingly, for the deterministic EM algorithm the
relative RSME shown in Table 3.5 could be used to derive the corresponding RSE of the
estimates.

Table 3.8.: Comparison of the relative RSME (relRMSE) resulting from the simulation & estimation
studies S1 and S2 and RSE for the SAEM algorithm both based on the untransformed parameter,
e.g. for a typical value/fixed effects parameter (θ) log Cl instead of Cl, for a BSV variance parameter
Ω1,1 instead of the respective CV representation and for the WSV σ instead of the respective CV
representation.

relRMSE (S1) RSE (S1) relRMSE (S2) RSE (S2)

θ1 (log Cl) 2.6 % 2.8 % 2.9 % 2.6 %
θ2 (log V1) 3.2 % 3.7 % 1.3 % 2.7 %
θ3 (log Q) 2.8 % 2.9 % 0.7 % 0.9 %
θ4 (log V2) 1.8 % 1.9 % 2.0 % 1.5 %

Ω1,1 (BSV Cl) 30.4 % 30.8 % 31.6 % 32.1 %
Ω2,2 (BSV V1) 38.0 % 35.3 % – –
Ω3,3 (BSV Q) 35.1 % 31.7 % – –
Ω4,4 (BSV V2) 35.0 % 30.3 % 28.3 % 31.6 %

σ (WSV) 6.3 % 5.0 % 4.2 % 4.5 %

Obviously, based on this investigation no general conclusion can be drawn. However,
the comparison shows that the deterministic EM algorithm performs sufficiently well for the
underlying situation. We are aware that the levofloxacin data is a rather ideal example with
dense data following single dose PK profile following a relatively simple two–compartment
kinetics. Moreover, it should be noted, that not only the methodology between the algo-
rithms differs but also input arguments related to the implementation, e.g. the convergence
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criterion or the number of iterations in the stochastic approximation step for the SAEM,
which obviously also affects the outcome of such an investigation.
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4. Discussion

In the first Part of this thesis a comprehensive overview over the NLME methodology,
including the derivation of ML estimates and a deterministic EM algorithm in this context
was presented. The NLME approach is a mixed model approach, where fixed and random
effects can be incorporated. A major challenge in estimating the model parameter of a
NLME model, which is based on the ML method, is that there does not exist an analytical
solution of the likelihood function. As a consequence, the commonly used Laplacian, FOCE
and FO methods are based on approximations of the likelihood function to derive the ML
estimates. These approximations and the respective mathematical background were revisited
in Section 2.2.

In this context we introduced new motivations of these approximations. Instead of ap-
proximating the likelihood function, the distribution of Zi = (Θi|Yi = yi) is approximated
by the normal distribution of the random variable ZLA

i ,ZFOCE
i or ZFO

i . The distribution
of ZLA

i and ZFOCE
i are centered around the same mode as Zi, while ZFO

i is centered
around the typical population value θ. Thus, ZLA

i and ZFOCE
i only differ in the variance–

covariance matrix: the variance–covariance of ZLA
i is given by the inverse of an estimate of

the observed Fisher matrix of Zi, while the variance–covariance of ZFOCE
i is given by the

inverse of an estimate of the expected Fisher matrix of Zi.
We illustrated the accuracy of approximating the expectation and variance–covariance of

Zi by ZLA
i ,ZFOCE

i and ZFO
i based on the analysis of the levofloxacin plasma PK data in

Section 2.2.5, whereas the reference distribution of Zi was derived using a MCMC approach.
For this example, the comparison revealed that the Laplacian and the FOCE approxima-
tion method provide comparable and adequate approximations for both expectation and
variance–covariance, clearly outperforming the FO approximation method, which is in line
with earlier findings Bauer et al. [2007]. Of course this example does not replace a rigorous
investigation and no general conclusion can be drawn.

However, because for the Laplacian and the FOCE method the mode of Zi has to be
determined using numerical optimization, these methods do not provide a closed-form ex-
pression of the approximated likelihood function. As a consequence, the ML estimates can
only be determined using an iterative algorithm.

Based on the new interpretation of the FOCE approximation, i.e. approximating the
distribution of Zi by the normal distribution of ZFOCE

i , we described a deterministic EM
algorithm for NLME models in Section 3 following the algorithms presented by Mentre and
Gomeni [1995]; Walker [1996]. Compared to Mentre and Gomeni [1995]; Walker [1996], we
complemented the description by details to include and derive the ML estimates for fixed
effects not associated with a random effects in the NLME model.

In Example 3.3 we used the deterministic EM algorithm to analysis the population PK
of levofloxacin and conducted a simulation & estimation study. Therein, we illustrate how
each step of the EM algorithm equilibrates the magnitude of BSV versus the magnitude
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of WSV. The result of a simulation & estimation study outlines that the NLME approach
outperforms the two–stage and the naive pooling approach in providing adequate estimates
for the BSV as well as the WSV for the underlying situation. Furthermore, the simulation
& estimation study was used to evaluate the performance of the deterministic EM algorithm
compared to the SAEM algorithm implemented in the R–package saemix (Comets et al.
[2011]). For the underlying situation, this comparison demonstrates that the deterministic
estimation approach performs sufficiently well. The details can be found in Section 3.3.9.

In a next step, the performance of the deterministic EM algorithm should be verified on a
wider range of applications. For example, different types of problems, with different degrees
of complexity regarding the structural and/or stochastic sub-model, and/or the data, e.g.
the number of subjects and the numbers of measurements per subject, could elaborate the
strengths, weaknesses and limitations of the deterministic EM algorithm, e.g. compared to
stochastic EM algorithms.

Furthermore, the presented EM algorithm could be extended to other commonly used
types of WSV models, e.g. the proportional or combined error model. In these error models,
the WSV depends on Θi; e.g. in the proportional error model

Yij = f(xij ;Θi, ϑ) · (1 + εij) , with εij ∼ N
(
0, σ2

)
,

the estimation of the EBEs θ̂i is no longer independent of σ2. As a consequence, neither the
Laplacian based algorithm (see page 33), nor the presented deterministic EM algorithm can
be applied, because the iteration steps are no longer independent of each other. According
to Beal and Sheiner [1998] one option is to replace the random variable Θi by the respec-
tive expectation value θ in the update step for the WSV. As a consequence, the WSV is
proportional to the typical population prediction and not to the individual prediction. Beal
et al. [1989-2013] offer an interaction option to avoid this problem, but the details of this
algorithm are not accessible.

As an alternative, in case of a proportional error and reasonable small WSV, we propose
to apply a log transformation of observations and model, combined with an additive error
which is expected to approximate the proportional error model very well.

In the next Part II, the presented deterministic EM algorithm is applied to two real world
applications.
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Part II.

Combining Nonlinear Mixed Effects– and
Mechanistic Modeling in Pharmacometrics

and Psychometrics
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5. Quantitative Pharmacology: Integrating
Mechanisms of Drug Distribution and Variability
into the Analysis of Population Pharmacokinetic
Data

The following chapter is planned to be published; it originated from a cooperation with
Prof. Charlotte Kloft, Institute of Clinical Pharmacy, FU Berlin, and her former PhD
student André Schäftlein.

5.1. Introduction

In this section the EM algorithm described in the first part of this thesis is applied to the
analysis of population pharmacokinetic data. The drug which is investigated is levofloxacin.
Levofloxacin is a broad spectrum antibiotic against Gram-positive and Gram-negative bac-
teria and was approved by the Food and Drug Administration (FDA) in 1996. It is primarily
used in treatments of infections of the respiratory and urinary tract, skin and soft tissues
and is administered orally or as i.v. infusion, see Fish and Chow [1997]; Neckel et al. [2002].
After its approval it became a blockbuster and was ranked as one of the most frequently
prescribed drugs in the US.

To ensure an as safe and as efficacious as possible treatment the pharmacology of a drug is
studied in many preclinical and clinical studies. For antibiotics, the emergence of resistance
puts both safety and efficacy at risk. The extensive use of levofloxacin increases this risk
and underlines the high relevance for a correct understanding of its pharmacology and to
preserve the drug’s antibacterial activity in future.

The efficacy of an antibiotic is defined as its ability to inhibit bacterial growth or even
kill bacteria; a comprehensive review describing the principles and ideas behind, is given by
Drusano [2004]. The ability to inhibit bacterial growth is first tested in in vitro studies.
A standard experiment consists of determination of the minimum inhibitory concentration
(MIC) w.r.t. a certain bacterial strain. The MIC is defined as lowest concentration which
inhibits visual bacterial growth in a standardized experimental setting. This experiment can
be conducted very easily and provides information about (i) whether the antibiotic works
against this type of bacteria, and (ii) what drug concentrations at the site of infection should
be reached.

As the readout of those experiments are done visually, they are subjective. Furthermore,
the efficacy is only quantified in a binary signal: whether the number of colony forming
units (CFUs)—an estimate of the bacteria count—after 18 to 24 hours of incubation with
the antibiotic ≤ number of CFUs at start of the experiment. More informative in vitro
studies are based on the determination of time–kill curves, which quantify the time–course
of bacterial growth or killing depending on the drug concentration.

61



5. Mechanistic Population Modeling in PK

Additionally, preclinical experiments are conducted in animals, where the conditions are
assumed to be more comparable to the human physiology and disease as in in vitro studies.
An important objective of such preclinical experiments is to identify a surrogate parameter
derived from plasma PK profiles which correlates with the efficacy of the drug. Those
parameters are called pharmacokinetic–pharmacodynamic (PK/PD) indices. In general, a
class of standard indices is tested, e.g.

• Cmax/MIC, where Cmax denotes the peak drug concentration,

• AUC0−24/MIC, where AUC0−24 denotes the area under the concentration–time curve
(AUC) over 24 hours after start of drug treatment,

• T≥MIC, the duration of time where C(t) ≥ MIC,

and the one which shows the highest correlation with the predefined endpoint, e.g. num-
ber of CFUs at infection site after a certain time, is chosen. For example, for levofloxacin
AUC0−24/MIC is the most predictive index for the majority of bacteria strains, see Andes
and Craig [2002]; Ambrose et al. [2003]; EUCAST [2007]. Brunner et al. [2005] stated that
“in most cases, only the concentration of unbound antibiotic in the ISF at the infection
site promotes the antibacterial effect”. As a consequence, indices be based on these concen-
trations are expected to be more appropriate. However, in humans the ISF concentration
are very difficult to assess appropriately. Hence, PK/PD indices from plasma might vary
substantially in relation to the target site of infection.

In general, these preclinical results are successfully translated into clinics. Heuristically,
one could argue that antibiotics target bacteria, which behave similar in different host
species. I.e. as long as the target is reached, the mechanism of action and the efficacy
should be similar among species. Andes and Craig [2002] draw the conclusion that “animal
models have been very useful for determining . . . (2) time–course of antimicrobial activity in
vivo, (3) PK/PD indices correlating with efficacy and (4) magnitudes of the PK/PD index
required for efficacy”.

Recently, it is getting more and more important to not only describe the efficacy of an
antibiotic, but to also quantify the emergence of antibiotic resistance as a function of the
drug concentration; this quantification is performed in an analogous procedure as described
above, e.g. see Drusano et al. [2006]. Based on these considerations and because in humans
only the clinical response—i.e. curing or progress of infections—can be measured, the PK/PD
relationship established in preclinical studies are assumed to be similar in humans.

In summary, the plasma PK/PD relationship of antibiotics are usually well understood
and the major risk is that too low antibiotic drug concentrations lead to a poor antibacte-
rial activity and likely to resistance, e.g. see Drusano [2004]. However, in general it is not
known whether drug concentrations in plasma and within the tissues—the drug target—are
similar. Thus, the objective of this work was to learn more about the target concentrations
and the link to plasma kinetics. In order to do this, the so–called PBPK modeling approach
was used. This method uses prior knowledge about species physiology, e.g. tissue volumes
and blood flows, and physicochemical properties of the drug to predict the PK in the whole
body. An introduction to PBPK models is given in the next Section 5.2.

62



5.1. Introduction

Another important aspect is to characterize the BSV of the PK in the patient population
to assess whether all patients are treated effectively. Thus, a further objective was to derive
a mechanistically motivated approach to integrate BSV into the PBPK model. This is very
helpful to identify factors which explain differences between patients or sub–populations,
and to use those factors to individualize the dosing if necessary.

The advantage of using PBPK models compared to the often used empirically motivated
compartmental models, as used in the Example 3.3, are numerous. The classical approach
is only based on the available data; i.e. the data should be reliable and contain all relevant
information needed for. Furthermore, classical PK parameters are only apparent parameters
and in this sense they are difficult to interpret in a physiologically meaningful manner.

The PBPK modeling approach is based on prior knowledge, i.e. it depends on different
data sources, e.g. species– or drug–related. This allows to easily incorporate physiological
differences between patient populations, and to make predictions for unstudied patient pop-
ulations. For example, an obese study population will certainly have an increased fraction
of adipose tissue compared to a normal population, which could easily be accounted for in a
PBPK model. This is a valuable property, especially, if a sub–population should be investi-
gated, which is critical to be investigated in a clinical study, e.g. due to ethical consideration
(e.g. pregnant women, elderly patients or neonates).

One disadvantage of the PBPK approach is that it relies on a large number of model
parameters. A large proportion of these parameters, usually the species- and non–drug
related parameters, are literature–based and statements about the uncertainty or variability
are in general not provided. The drug specific parameters are often not known and have to
been derived from in vitro or pre–clinical in vivo experiments. This makes it sometimes
difficult to develop a PBPK model and to judge the reliability of the results. If plasma PK
data are available, a common procedure is to estimate the missing, or adapt the existing,
parameter values based on these plasma data, e.g. see Tsamandouras et al. [2013]. However,
there exist only few examples (e.g. see Ploeger et al. [2001]; Krauss et al. [2013, 2015];
Tsamandouras et al. [2015]) where such approaches have been used in a population context
when considering random variability in parameters between individuals.

Another issue of the PBPK approach is that the details of drug–specific processes, e.g. the
binding and distribution within tissue or tissue sub–spaces, are not known. Within humans
these processes are difficult or impossible to study with experiments. As a consequence,
fundamental preclinical experiments are conducted in animals and one assumes that the
studied processes can be extrapolated across species. As soon as clinical data is available,
one can examine whether the PBPK model, and the underlying assumptions are consistent
with the data. However, we were in the exceptional situation to have access to human tissue
PK measurements of levofloxacin in the ISF, a common site of infections, obtained by so–
called microdialysis. These data gave us the unique opportunity to investigate and verify
the mechanistic tissue binding and distribution model of Rodgers et al. [2005b] for humans.

In summary, the objectives of this chapter are:

1. To build a PBPK model for levofloxacin incorporating prior knowledge about the
mechanism of drug disposition.

2. To integrate BSV using prior knowledge about the patient population.
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3. To establish an approach how population PK plasma data and NLME modeling can
be used to refine the PBPK model and estimate missing parameters and the variability
between patients.

4. To compare the tissue ISF predictions with the corresponding PK measurements ob-
tained by the microdialysis technique.

A schematic presentation of the resulting new mechanism–driven modeling approach is
shown in Figure 5.1. The illustrated process will explained in detail based on the analysis
of the levofloxacin plasma PK data in the following sections.

Figure 5.1.: Schematic illustration of the mechanism–driven analysis of population PK data. Grey
boxes & white printing depict the entire input, black boxes & white printing depict the processing
steps and grey boxes & black printing depict the results of each processing step.

The following chapter starts with the development of the PBPK model for levofloxacin in
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humans. The PBPK model is individualized using individual patient information according
to our work described in Huisinga et al. [2012]. Based on this model, it is shown how the
population plasma PK data can be analyzed with a mechanistic modeling approach using
the deterministic EM algorithm in combination with the lumping approach by Pilari and
Huisinga [2010]. The results were compared to the results of the classical population PK
analysis presented in Section 3.3. Finally, PBPK model–based ISF microdialysis concen-
trations were predicted and compared with microdialysis measurements obtained in muscle
and adipose ISF.

5.2. Mechanistic Modeling in Pharmacokinetics:
Physiologically Based Pharmacokinetics

In the introduction to PK in Section 1.1.1, the four main processes of PK were introduced:
absorption, distribution, metabolism and excretion. In the underlying levofloxacin studies,
levofloxacin was administered as an i.v. infusion. Thus, we assumed that there is no ab-
sorption process involved and the drug is immediately available in the blood. In Section 3.3
the PK of levofloxacin was characterized by a two compartment model. Metabolism and
excretion were summarized in the clearance parameter. PBPK models are based on the
same mathematical framework as classical compartmental models and are described by an
ODE system. Compared to a classical compartmental model, which in general consists of
one to four compartments, in PBPK modeling each tissue and organ is described sepa-
rately and represented as a separate compartment in the model. These compartments are
connected via regional blood flows. Each tissue is further divided into usually three sub–
components: the vascular, the interstitial and the cellular space. Based on the drug class
and the physiology of the tissue the approaches by Rodgers et al. [2005a,b]; Rodgers and
Rowland [2006, 2007] allow to predict the so–called tissue–to-blood partition coefficient. Us-
ing these partition–coefficients the drug concentration within each tissue can be predicted.
For more information about PBPK modeling, the tutorial by Jones and Rowland-Yeo [2013]
offer a comprehensive introduction with further references about the history, development
and practical applications of this wide topic.

5.2.1. Whole Body Physiologically Based Pharmacokinetic Modeling

To model the PK of levofloxacin, we used a 13 compartment PBPK model comprising the
most important tissues and organs: adipose (adi), artery (art ), bone (bon), brain (bra),
gut (gut), heart (hea), kidney (kid), liver (liv), lung (lun ), muscle (mus), skin (ski), spleen
(spl) and vein (ven ). A schematic presentation of the whole body PBPK model is shown in
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Figure 5.2; the corresponding ODE system is given by the following equations

Vven
d

dt
Cven (t) = co · (Cin, ven (t)− Cven (t)) + r(t) (5.1)

Vlun
d

dt
Clun (t) = f co

lun · co ·
(
Cven (t)− Clun (t)

Klun :blo

)
Vart

d

dt
Cart (t) = co ·

(
Clun (t)

Klun :blo
− Cart (t)

)
Vtis

d

dt
Ctis(t) = f co

tis · co ·
(
Cart (t)− Ctis(t)

Ktis:blo

)
Vkid

d

dt
Ckid(t) = f co

kid · co ·
(
Cart (t)− Ckid(t)

Kkid:blo

)
− Clkid, int ·Ckid(t)

Vliv
d

dt
Cliv(t) = f co

liv · co ·
(
Cin, liv −

Cliv(t)

Kliv:blo

)
− Clliv, int ·Cliv(t),

with tis ∈ {hea, bra, spl, gut, ski, bon, adi,mus} and

Cin, ven =
∑

tis∈{hea,bra,spl,gut,ski,bon,adi,mus,liv}

f co
tis ·

Ctis(t)

Ktis:blo
,

Cin, liv =
1

f co
liv

∑
tis∈{art ,spl,gut}

f co
tis ·

Ctis(t)

Ktis:blo
,

with the following notations: Vtis denotes the physiological volume of the tissue, co the
cardiac output, f co

tis the fractional regional tissue blood flow expressed as fraction of cardiac
output, Ktis:blo the tissue–to–blood partition coefficient, r(t) the dose infusion rate and
Cltis, int the intrinsic tissue clearance. According to Rodgers et al. [2005b] the total drug
concentration Ctis can be interpreted as the “concentration of drug in a tissue outside the
blood perfusing it”. Obviously, the initial conditions of the above system are given by
Cven (0) = . . . = Cliv = 0, under the assumption that system is drug free before the first
administration.

Only Ktis:blo and Cltis, int are drug specific parameters. The remaining parameters are
species specific and are obtained from literature. The sources of the physiological parameters
are described in Table 5.1. Because several of the tissue–specific values were not available
for humans, these values were fixed to the corresponding animal values.

In the next section, we describe how Ktis:blo is determined based on physicochemical
properties of levofloxacin.

Tissue Distribution

Levofloxacin belongs to the so–called type I zwitterions (Rodgers et al. [2005b]), i.e. the
molecule has one negatively charged functional group, one positively charged functional
group and at least one basic ionization constant pKa ≥ 7 (Rodgers and Rowland [2006]).
The tissue distribution is modeled according to Rodgers et al. [2005b], which is based on
the assumption that for each tissue the drug exchange between the three subspaces is fast
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Figure 5.2.: 13 compartment PBPK model comprising the most important organs. The drug is
administered i.v., distributed via the blood into the tissues and eliminated via the liver (hepatic
elimination) and the kidneys (renal elimination).

compared to the regional blood flow (perfusion rate limited tissue model, Jones and Rowland-
Yeo [2013]). I.e. every concentration change in the vascular space of a tissue will immediately
lead to a concentration change in the interstitial and cellular space and vice versa. In
the extracellular space—the vascular (vas) and interstitial space—levofloxacin binds to the
protein albumin and in the cellular space (cell) levofloxacin interacts with neutral lipids,
neutral phospholipids and has a predominant affinity to acidic phospholipids, see Figure 5.3.

Assuming that the unbound and unionized concentrations in the three subspaces are
identical at steady state, Rodgers et al. [2005b] show that the tissue–to–unbound plasma
(up) partition coefficient can be approximated by

Kss
tis:up =

Css
tis

Css
up

(5.2)

= fVtis
isf + fVtis

vas + fVtis
cell · Icell

+ fVtis
nl · Inl ·Ktis

nl:w + fVtis
npl · Inpl ·Ktis

npl:w

+ fVtis
apl · Iapl ·Kaapl,

with the following notations: fVtis
ss /vas/isf /cell/nl/npl/apl denotes the volume of the sub–space

as fraction of the total tissue volume, I describes the ionization based on the Henderson–
Hasselbalch equation (Rowland and Tozer [2011]) depending on the ionization constants of
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Table 5.1.: Physiological parameter values of the reference PBPK model. For the tissues in brackets
reference values for the human were available, all other parameters were either completely available
for human, or only rat parameters existed.

reference values species literature source

anthropometric covari-
ates

human ICRP [2002, chap.
2.3.1.]

organ mass & density human ICRP [2002, chap.
2.3.1.], Brown et al.
[1997]

blood flow rates human ICRP [2002, chap.
2.3.1.]

fractions of interstitial
space

rat, human (adi) Kawai et al. [1994]; En-
gelhardt et al. [1971]

fractions of neutral
lipids

human Poulin and Theil [2009]

fraction of neutral phos-
pholipids

human Poulin and Theil [2009]

fraction of intra–cellular
acidic phospholipids

rat, human (mus, pla,
ery)

Poulin and Theil [2009]

fraction of total tissue
water

rat, human (adi, mus,
pla, ery)

Poulin and Theil [2009];
Engelhardt et al. [1971]

interstitial–plasma al-
bumin concentration
ratio

rat, human (adi, mus) Poulin and Theil [2009];
Ellmerer et al. [2002]

interstitial–plasma
lipoprotein concentra-
tion ratio

rat Poulin and Theil [2009]

levofloxacin and the pH value in the tissue subspace, nl denotes the neutral lipids concen-
trations, Knl:w denotes the neutral lipids–to–water partition coefficient, which is assumed to
be identical for all tissues except adipose, npl denotes the neutral phospholipids concentra-
tions and Knpl:w denotes the neutral phospholipids–to–water partition coefficient, which is
assumed to be identical for all tissues except adipose, apl denotes the acidic phospholipids
concentrations and Kaapl the association constant to acidic phospholipids. The partition co-
efficients Knl:w and Knpl:w can be derived from the octanol–water partition coefficient Po:w,
which in general is determined in vitro and is a measure for the lipophilicity of a molecule.

According to Rodgers and Rowland [2006], the binding to the apl dominates the tissue
distribution for type I zwitterions, thus Kaapl represents an important parameter. Unfor-
tunately, these parameters are rarely investigated in vitro. However, Rodgers et al. [2005b]
considered that human blood cells—mainly erythrocytes (ery)—contain acidic phospholipids
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Figure 5.3.: Tissue distribution of a type I zwitterion according to Rodgers et al. [2005b] adjusted
for levofloxacin. In the vascular (vas) and interstitial space (isf) levofloxacin binds to albumin (alb).
After ionization in the cellular space (denoted by I), levofloxacin binds to neutral lipids (nl), neutral
phospholipids (npl) and acidic phospholipids (apl).

and do not consist of vascular or interstitial space fluids (fVery
isf = f

Very
vas = 0). Thus, rear-

ranging Equation (5.2) for tis = ery leads to

Kaapl =
Kery:up − f

Very
cell Icell − f

Very
nl InlK

ery
nl:w − f

Very
npl InplK

ery
npl:w

f
Very
apl Iapl

. (5.3)

The only unknown parameter value in this equation is Kery:up. Considering that blood
mainly consists of plasma and erythrocytes, and neglecting the other blood cells components,
the drug amount in the erythrocytes can be expressed as the difference of drug amount in
blood and in plasma Aery = Ablo − Apla, where A denotes the drug amount A = V · C.
Furthermore, for our patients the individual erythrocytes fraction of the total blood, named
hematocrit hct, was measured and one has Very = hct · Vblo and Vpla = (1 − hct) · Vblo.
I.e. the erythrocytes concentration can be expressed by the weighted blood and plasma
concentrations

Cery =
1

hct
Cblo −

1− hct

hct
Cpla

and the erythrocytes–to–unbound plasma concentration ratio is given by

Kery:up :=
Cery

Cup
=
Kblo:pla − (1− hct)

fup · hct
, (5.4)

where Kblo:pla := Cblo/Cpla denotes the blood–to–plasma ratio which can be determined
in vitro, and fup denotes the unbound fraction of drug in plasma which is not bound to
proteins.

In summary, the physicochemical properties of levofloxacin needed for the tissue distri-
bution model introduced above are
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• the ionization constant of the positively and the negatively charged functional groups,
denoted by pKa1 and pKa2, to derive the ionized and unionized fractions of the drug
within the different tissue subspaces,

• the octanol–water partition coefficient Po:w, usually reported as logPo:w, to derive the
binding to the neutral lipids and neutral phospholipids,

• the blood–to–plasma ratioKblo:pla as a surrogate for the affinity to the acidic phospholipids—
this parameter is species dependent, compared to the previous properties.

In the next step the patient’s individual protein binding is derived.

Protein Binding

The fraction of unbound drug in plasma is defined as the ratio of the unbound and the
total concentration fup := Cup/Cpla, where the index u denotes the unbound fraction. The
dominating protein binding of levofloxacin in plasma and interstitial space is to the protein
albumin (alb) (see Fish and Chow [1997]; Sun and He [2008])

levofloxacin + albumin � levofloxacin:albumin.

Based on the levofloxacin–albumin affinity constant Kaalb determined by Sun and He [2008]
and assuming a linear protein binding the fraction unbound in plasma can be approximated
by

fup =
1

1 + KaalbCalb
, (5.5)

with albumin plasma concentration Calb (Rowland and Tozer [2011, chap. 4]).
In summary, based on the physicochemical properties of the drug Ktis:up is determined.

Using fup and Kblo:pla the tissue–to–unbound plasma partition coefficient Ktis:up defined
in Equation (5.2) can easily be transformed into the tissue–to–blood and tissue–to–plasma
partition coefficient by

Ktis:blo = fup
Ktis:up

Kblo:pla
and Ktis:pla = fupKtis:up. (5.6)

The last process to finally predict the tissue concentrations is the drug elimination from the
tissue, see Figure 5.3 which is described in the next section.

Clearance

The present work did not consider an a priori approach to predict the clearance based on
in vitro data as introduced for the drug distribution. Rather, the total plasma clearance
was estimated based on the plasma PK data. The plasma clearance was transformed into
an intrinsic tissue clearance for the integration into the PBPK model (5.1). To this end,
it was assumed that levofloxacin is mainly cleared by filtration and re–absorption in the
kidneys (∼ 80%) and only to a small amount metabolized in the liver (≤ 5%) (Fish and
Chow [1997]). Thus, we assumed that total clearance is composed of fCl

kid = 80% renal
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(kidney) clearance and fCl
liv = 5% hepatic (liver) clearance. As the remaining 15% could not

be allocated to a specific organ, we assumed fCl
ven = 15% to be cleared form the vein.

To transform the estimated total plasma clearance into an intrinsic organ clearance, we
consider that under steady state conditions, that is, d/dtCtis = 0 in model (5.1) one has

0 = Qtis · Cin − (Qtis +Ktis:blo · Cltis, int) · (Ctis/Ktis:blo),

⇔ Cin − Ctis/Ktis:blo

Cin︸ ︷︷ ︸
=:Etis

=
Ktis:blo · Cltis, int

Qtis +Ktis:blo · Cltis,int
(5.7)

where Cin is the inflowing concentration into the tissue according to Equation (5.1) and
the term Ctis/Ktis:blo represents the out–flowing tissue concentration. The so–called tissue
extraction ratio Etis is defined as the fraction of drug removed from the tissue during passage
through the tissue. For organ blood clearance we have Cltis, blo = fCl

tis · Clblo = Qtis ·Etis,
with total blood clearance Clblo = Clpla /Kblo:pla and Qtis the tissue blood flow.

Thus, the intrinsic clearance as function of the blood clearance is given by

Cltis, int =
fCl
tis Clblo

Ktis:blo (1− Etis)
=
fCl
tis Clblo

K̂blo:tis
, (5.8)

with K̂blo:tis := Ktis:blo (1 − Etis) for tis ∈ {kid, liv}. This model is called the well–stirred
tissue model and is widely used in mechanistic PK modeling; a detailed motivation and
derivation of this model can be found in Rowland and Tozer [2011, chap. 2 and appendix].

Now, all processes relevant for the tissue–distribution are described. Assuming the con-
centration ratios to be constant Ktis:blo = Kss

tis:blo over time, blood and tissue concentration–
time courses can predicted.

In the next section these processes are individualized based on the physiological informa-
tion of the patients.

5.2.2. Mechanistic Modeling of Physiological Inter–Individual Variability

Based on the individually measured hematocrit and plasma albumin concentration and
Equations (5.4) and (5.5) the erythrocytes–to–plasma partition coefficient and the protein
binding are individualized, respectively.

For patients without measured hematocrit value (18 out of 24), the missing covariate
was replaced by the literature reference stratified on sex—43% for male and 38% for female
patients (ICRP [2002, chap. 2.3.1.]). For patients without measured plasma albumin con-
centration (8 out of 24), the missing covariate was replaced by the median of the available
albumin concentrations stratified on sex—40 g/L for male and 46.7 g/L for female patients.
This resulted in a bound fraction (1 − fup) of 20.6 ± 4.2 % (mean ± standard deviation),
which is in good agreement with the results obtained by Neckel et al. [2002] for levofloxacin
(21.9± 3.2 %).

Obviously, also the body composition differs between individuals, e.g. the tissue volumes
and blood flow rates. There are approaches published to account for these differences in
PBPK modeling, e.g. see Price et al. [2003]; Willmann et al. [2007]. However, these ap-
proaches either only poorly reflect experimentally observed physiological BSV, or they only
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achieve this by using randomly sampled physiological parameters according to the experi-
mental observed variability. The latter means that unexplained variability is integrated in
the model. In contrast, our focus was to link variations in the anatomical and physiological
parameters to covariates, which we denote as mechanistically derived BSV. As a conse-
quence, we developed our own approach (Huisinga et al. [2012]). The idea was to collect
published information about the relationship between anthropometric properties, like body
weight or height, and physiological parameters used in PBPK modeling.

The finding was that there seems to be a lack of literature which investigates the individual
body composition to such a detail we would need. In general, several publications focus on
only one tissue and often statements about the BSV are missing. A relatively rich source
is given by an autopsy study conducted by de la Grandmaison et al. [2001]. They provide
the mean values and BSVs for the organ weights of heart, lung, liver, spleen, pancreas,
kidney and thyroid gland. Furthermore, they observed a correlation between organ weight
and body height and body–mass–index (BMI). The basis of this conclusion was a linear
regression where only the coefficient of determinations were provided. Unfortunately, the
authors did not provide the details of the analysis upon a request, nor the original data
to further investigate those dependencies. However, their results were very useful because
they showed that (i) there is link between anthropometry and organ weights and (ii) they
provided statements about the BSV of the organ weights.

For each individual a PBPK parameter database xi is created containing the individual-
ized anatomical and physiological parameters based on the patients age, sex and covariates
like body weight (BW ), body height (BH), BMI (BMI[kg/m2] = BW[kg]/(BH[m])2), and
body–surface–area (BSA) BSA[m2] =

√
BH[m] · BW[kg]/(36[kg/m3]) using the following

approach:

1. Definition of reference female reffemale and male subject refmale based on literature
data, see Table 5.1); e.g. the reference subject of a Caucasian woman (≥ 18 years) has
a body weight of BWref,female = 60 kg, a body height of BHref,female = 1.63m and for
example a blood volume of V ref,female

blo = 3.9L. Because all patients in the underlying
study were adult Caucasians, we only stratified for sex.

2. Because it is known that cardiac output is correlated with age (Luisada et al. [1980]),
the reference population is further stratified by age classes 18–39, 40–59, 60–69, 70–79,
80–89 years. In Luisada et al. [1980] the respective means and variability for cardiac
output are provided.

3. Based on the individual covariates the adipose organ weight W is approximated by
Wadi[kg] = BW[kg] − LBW[kg], with lean–body–weight (LBW). If LBW was not
measured—as in the underlying study—the following approximations by Janmahasa-
tian et al. [2005] were used

LBW[kg] =
9270 · BW[kg]

8780 + 244[m2/kg] · BMI[kg/m2]
, for female,

LBW[kg] =
9270 · BW[kg]

6680 + 216[m2/kg] · BMI[kg/m2]
, for male. (5.9)

The organ weight can be transformed into a volume by using the organ’s density
Vadi[L] = dadi[L/kg] ·Wadi[kg], with dadi = 0.92L/kg (see Brown et al. [1997]).
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4. Based on ICRP [2002, chap. 3.3.1.] it was assumed that the brain volume is constant
Vbra = Vref

bra within the reference population, and that the organ density of dbra = 1
(see Brown et al. [1997]).

5. For the skin it was considered that the volume is equal to the skin surface area (BSA)
times the skin thickness ∆ski. According to Price et al. [2003] it was assumed that the
thickness is constant over the body and within a reference population. Thus, one has
Vski = BSA ·∆ref

ski and an organ density of dski = 1 (see ICRP [2002]).

6. The remaining individual body weight was defined as BWrem := BW−Wadi−Wbra−
Wski. The remaining body weight of the reference female/male subject was defined as
BWref

rem := BWref,female/male−W ref,female/male
adi −W ref,female/male

bra −W ref,female/male
ski , respec-

tively. For the remaining tissues we assumed the proportion of the tissue volumes w.r.t.
remaining body weight BWrem to be identical to these proportions of the reference
subject: Wtis/BWrem = W

ref,female/male
tis /BWref,female/male

rem for tis ∈ {art ,gut,hea,kid,liv,
lun ,bon,mus,spl,ven }. For example, the amount of muscle tissue would be 47 % and
54 % of BWrem for all female and male patients, respectively.

7. According to the description above individual values for the hematocrit hct and the
fraction unbound fup are included in the indvidual PBPK parameter database xi as
well.

The approach was qualified based on the distribution properties provided by de la Grand-
maison et al. [2001]. In comparison to the existing approaches, the herein proposed LBW
scaling approach predicts more realistic variations of the organ weights as the approaches
by Willmann et al. [2007]—based on body height scaling—and by Price et al. [2003]—based
on regression using different covariates. Our approach was further supported by the data
published by Nyengaard and Bendtsen [1992]. The dataset contained the individual kidney
weight and the covariates sex, body height and body weight of 18 adult males and 18 adult
females. In Figure 5.4 the correlation with the LBW is shown; the correlation was higher
compared to the other anthropometric variables body height, body weight or BMI.

Although there are more sources of physiological BSV, e.g. in the tissue composition
(see White et al. [1991]), only sources which could be related to measurable covariates were
included in this approach.

5.2.3. Lumping of PBPK Models

In this section we introduce the so–called lumping approach. The idea of lumping is to lower
the dimension of a PBPK model and to establish a link to the lower dimensional classical
compartmental models while maintaining the mechanistic basis of a PBPK model. As a
consequence, the computational effort to solve the associated ODE system numerically is
reduced and parameter estimation is faster and more stable.

Pilari and Huisinga [2010] derived a method where they distinguish between two kinds of
lumped model, the first—denominated as minimal lumped model—is defined as the model
with as few compartments as possible, where the ability to describe the blood and/or plasma
concentration is maintained; the second—denominated as mechanistical lumped model—is
defined as the model with as few compartments as possible, where for all tissues the tissue
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Figure 5.4.: Kidney weight vs. lean body weight: Crosses represent the female subjects and dots
represent the male subjects. Solid lines represent the linear regression of kidney weight as function
of lean body weight showing an correlation (Pearson’s correlation coefficient) of 0.38 for female (red)
and 0.49 for male (blue) subjects, respectively.

concentrations can be derived from the lumped model. Both approaches exploit “the fact
that drug concentrations in different compartments of the whole–body PBPK model are
often strongly kinetically dependent on each other” (Pilari and Huisinga [2010]).

Until now, there is no mathematical criterion established how the lumping and the number
of lumped compartments k has to be chosen for a minimal or mechanistical lumped model. In
a lumped model the central compartment L 1 contains the blood tissues, while the remaining
tissues are assigned to one of the k compartments

L 1 = {art , ven , . . . , tis1,n1}, n1 ≥ 0,

L 2 = {tis2,1, . . . , tis2,n2}, n2 > 0,

...
L k = {tisk,1, . . . , tisk,nk}, nk > 0,

and 1 ≤ k ≤ 13. Using the approach by Pilari and Huisinga [2010], tissues are lumped
together, if the normalized concentration profiles Ctis/K̂tis:blo are similar. Thereby, the
numbers of minimal or mechanistically lumped compartments, as well as lumping itself is
defined based on visual inspection of the normalized profiles. Note, the composition of
the lumped compartments is not unique and is subjective to some extend. However, Pilari
and Huisinga [2010] obtained that in general the minimal lumped model consists of one to
three compartments—as in classical compartment modeling—and the mechanistical lumped
model in general consists of four compartments; thereby the central compartment usually
comprises well perfused tissues like lung, kidney and heart, while the peripheral compartment
comprises the poorly perfused tissues like adipose, muscle and bone.

If k > 1, the structure of the lumped model is defined in the way that the central compart-
ment is directly connected to all peripheral compartments, while the peripheral compart-
ments are not connected among each other. The elimination is not restricted to a certain
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lumped compartment. Although, usually it is considered from the central compartment
using the blood clearance—as usually done in classical compartment modeling.

For the perfusion–rate limited model, the corresponding ODE system is given by

VL 1

d

dt
CL 1(t) =

k∑
j=2

QL j

(
CL j (t)− CL 1(t)

)
− ClL 1 CL 1(t) + r(t)

VL 2

d

dt
CL 2(t) = QL 2

(CL 1(t)− CL 2(t))− ClL 2 CL 2(t)

...

VL k
d

dt
CL k(t) = QL k (CL 1(t)− CL k(t))− ClL k CL k(t),

with CL 1(0) = . . . = CL k(0) = 0. The apparent PK parameters are given by

• the lumped volumes of distribution

VL j :=
∑

tis∈L j

Vtis K̂tis:blo, for 1 ≤ j ≤ k, (5.10)

where K̂tis:blo = (1 − Etis) · Ktis:blo denotes the tissue–to–blood partition coefficient
corrected by the amount of drug removed from the tissue, presented by the extraction
ratio Etis,

• for k > 1 the inter-compartmental clearance(s)

QL j := co ·
∑

tis∈L j

f co
tis, for 2 ≤ j ≤ k, (5.11)

• and the clearances

ClL j =
∑

tis∈L j

Cltis, blo, for 1 ≤ j ≤ k. (5.12)

The concentrations in the lumped compartments are defined as the weighted sum of the
tissue concentrations, see Pilari and Huisinga [2010]:

CL j (t) =
∑

tis∈L j

Vtis

VL j
Ctis(t), for 1 ≤ j ≤ k.

Furthermore, Pilari and Huisinga [2010] show that the lumped concentrations can be trans-
formed back into the original tissue concentrations by correcting with the tissue–to–blood
partition coefficient

Ctis(t) ≈
K̂tis:blo

KL j
· CL j (t), with tis ∈ L j , (5.13)

with KL j :=
∑

tis∈L j
Vtis
VL j
· K̂tis:blo.
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5. Mechanistic Population Modeling in PK

To illustrate the lumping approach at this point, the parameters of the PBPK model
which are derived and presented in the following sections are used for the simulations.

Based on the visual inspection of the partition–coefficient normalized concentrations time
profiles shown in Figure 5.5, we choose k = 2 compartments for the minimal lumped model
of levofloxacin and the lumping as depicted in the schematic representation in Figure 5.6.
The normalized tissue concentrations advise that the tissues assigned to the central com-
partment are more or less identical, while in the peripheral compartment the normalized
muscle concentrations differ from the other peripheral tissues. Based on this, we infer that
the chosen lumping model might be appropriate as a minimal lumped model to successfully
describe the venous plasma concentration, but it will not be acceptable as a mechanistical
lumped model where all tissues concentrations should be reproducible. As shown in Fig-
ure 5.7, the chosen minimal lumped model adequately describes the vein concentration of
levofloxacin.
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Figure 5.5.: Tissue partition–coefficient normalized tissue concentrations of the full PBPK model.
Left: the tissues assigned to the central compartment. Right: the tissues assigned to the peripheral
compartment. In the left plot no distinction between the single tissues is possible, while in the right
plot the normalized profiles of the skin, bone, and adipose are similar, but the profile of the muscle
(green) significantly deviates from the others.

The normalized profiles indicate that a mechanistical lumped model is given by splitting
the peripheral compartment into one compartment comprising the skin tissue, one compris-
ing the bone and the adipose tissue, and one comprising the muscle tissue. The results of
such a model are shown in Figure 5.8. The figures illustrate that the lumping methodology
is able to reproduce the same information provided by a 13 compartment model with only
four compartments, considering that the kinetics between tissues might be very similar. Ad-
ditionally, it also gives a hint about the maximal identifiable compartments in a classical
analysis; as example, based on plasma data two compartments at most would be identifiable
for levofloxacin.
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Figure 5.6.: Schematic presentation of the minimal lumped two compartment model. The central
compartment comprises the well perfused tissue artery, brain, gut, heart, kidney, liver, lung, spleen
and vein and the peripheral compartment comprises the poorly perfused tissues adipose, bone, muscle
and skin.

5.3. Results

5.3.1. Population Analysis of Levofloxacin Plasma Data Based on a Minimal
Lumped PBPK Model

In this section, the developed PBPK model, the mechanistically integrated BSV and the
lumping method are combined with the EM algorithm to estimate the missing drug–related
parameters and refine important physiological parameters. As mentioned above, the physic-
ochemical parameters of levofloxacin which are needed for PBPK modeling are the ionization
constants pKa1 and pKa2, the octanol–water partition coefficient logPo:w and the blood–to–
plasma ratio Kblo:pla. Additionally, the total blood clearance Clblo is needed. A literature
review revealed several sources for the pKa and the logPo:w values, see Table 5.2. There was
an inter–publication variation, complicating the choice of those values. Besides, we had no
findings about the human blood–to–plasma ratio for levofloxacin. Because of its importance
it was decided to estimate this parameter based on the plasma data. The idea to use minimal
lumped models to estimate missing parameters is not new, e.g. see Cao and Jusko [2012].
However, until now this has not been put into a population context.

For other substances an intra- and inter–subject variability of Kblo:pla was reported, e.g.
see Høiseth et al. [2009] and Schwilke et al. [2009]. Furthermore, Kblo:pla is an important
parameter to derive the cellular distribution, see Equations (5.3) and (5.4), where BSV is
very likely to occur. For example, White et al. [1991] compiled data about the composition of
the adipose tissues, and observed that the percentage of tissue water varies around CV% 45,
the percentage of lipids around CV% 18 and the percentage of proteins around CV% 80 in
adults. Using Kblo:pla as a surrogate for these processes it is reasonable to expect BSV on
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Figure 5.7.: Tissue partition–coefficient normalized tissue concentrations of the full PBPK model
compared with the minimal lumped concentrations (dashed red lines) for the first 8 hours. For the
central compartment (left) only the vein (blue) and the lumped concentration are displayed, indicating
a good agreement between both. The right plot confirms the observation in Figure 5.5 that additional
compartments are necessary to reproduce the muscle tissue successfully. As already indicated by the
distribution half life, the plot confirms that there are also deviations between the skin (black) and
the bone (rose) and adipose (violet). The right plot nicely illustrates how the lumped concentrations
form a mixture of the normalized tissue concentrations.

Kblo:pla.
To find the most appropriate combination of the physicochemical parameters, different

values for pKa and logPo:w were tested in combination with the estimation of Kblo:pla and
the associated BSV.

For the integrated lumped PBPK and NLME analysis of the plasma PK data the follow-
ing approach was developed. Via the lumping the structural model is defined; as described
in Section 5.2.3 for levofloxacin the minimal lumped model is given by a two compart-
ment model. As in our situation, usually not for all parameter of the PBPK model values
are available. However, the model has to be fully parameterized to define the structural
model via the lumping. Therefore, for unknown parameter values different values should be
tested and it should be examined whether the resulting minimal lumped models differ in the
number of compartments and the composition of the lumped compartments. Furthermore,
subsequently it should be tested if the structural model used for the parameter estimation
is identical to the minimal lumped model resulting using the final parameter estimates.

The structural model is parametrized by log Cl, logKblo:pla and a correction factor ∆lco

to adjust the prior information of the cardiac output co. The apparent PK parameters
V1(xi,∆lco, log Cl, logKblo:pla), V2(xi,∆lco, log Cl, logKblo:pla) and Q(xi,∆lco) depend on
the individualized physiological data xi which was defined in the previous Section 5.2.2
and which is needed to parameterize a PBPK model xi, see for example Table 5.1. There-
fore, in a first step for each individual the independent variables xi is generated based on a

78



5.3. Results

0
2

4
6

8
1

0

0 2 4 6 8

N
o

rm
a

liz
e

d
 C

o
n

c
. 

[m
g

/l
]

Time [h]

0
2

4
6

0 2 4 6 8
0

1
2

3
4

5
6

0 2 4 6 8

0
1

2
3

4

0 2 4 6 8

Figure 5.8.: Normalized concentration of the full PBPK model compared with the mechanistical
lumped concentrations (dashed red lines) for the first 8 hours. For the central compartment (left)
only the vein (blue) and the lumped concentration are displayed. The second plot shows the normalized
skin tissue concentration (black). The third plot shows the normalized bone (rose) and adipose (violet)
concentrations. The last plot shows the normalized muscle (green) concentrations. The predictions of
the lumped model are in excellent agreement with the normalized tissue concentrations for all tissues.

comprehensive physiology database and the individual covariates according to the descrip-
tion in Section 5.2.2. Given xi and values for log Cl, logKblo:pla and ∆lco the apparent
parameters are derived using the following sequential approach:

(1) Calculate cardiac output co(xi,∆lco) = coprior(xi) e
∆lco and update tissue blood flows

accordingly Qtis(xi,∆lco) = f co
tis · co(xi,∆lco) for all tissues.

(2) Translate plasma clearance Cl into the blood clearance

Clblo(log Cl, logKblo:pla) = exp(log Cl− logKblo:pla).

(3) Using (1) and (2) the extraction ratio of the eliminating organs is determined

Etis(xi,∆lco, log Cl, logKblo:pla) =
fCl
tis Clblo(log Cl, logKblo:pla)

Qtis(xi,∆lco
.

(4) Calculate partition–coefficients Kery:up(xi, logKblo:pla) and
Ktis:pla(xi,∆lco, log Cl, logKblo:pla) for all tissues according to Equations (5.4) and
(5.6).
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(5) Calculate lumped PK parameters:

V1(xi,∆lco, log Cl, logKblo:pla) =
∑

tis∈cen

Vtis(xi) K̂tis:pla(xi,∆lco, log Cl, logKblo:pla),

V2(xi,∆lco, log Cl, logKblo:pla) =
∑

tis∈per

Vtis(xi) K̂tis:pla(xi,∆lco, log Cl, logKblo:pla),

Q(xi,∆lco) =
∑

tis∈per

Qtis(xi,∆lco)

where K̂tis:pla = (1 − Etis)Ktis:pla and the central compartment cen comprises the
artery, vein, lung, heart, kidney, spleen, gut, liver, brain and the peripheral compart-
ment per comprises the skin, bone, adipose and muscle tissue, using the individual
scaled tissue volumes.

Thus, the apparent parameters are dynamic functions of the parameters log Cl, logKblo:pla
and ∆lco. Since the approach requires several intermediate computations (like the deter-
mination of the Ktis:pla(xi,∆lco, log Cl, logKblo:pla) relying on detailed physiological data),
the implementation in standard population PK software tools on simple script structures,
like NONMEM, is very cumbersome. Particularly, in case more complex PBPK and/or
tissue–distribution model would be used.

We included random effects on the clearance, the blood–to–plasma ratio and the cardiac
output. Thus, the random effects model is given by

Θi ∼ N3 (θ,Ω) ,

with θ ∈ R3 and Ω ∈ R3×3
>0 , where the off–diagonals Ω1,3 = Ω3,1 = Ω2,3 = Ω3,2 = 0 and

Ω3,3 = ω2
co, where ω2

co represents variance of the BSV of the cardiac output which was fixed
to a literature value (Luisada et al. [1980]).

As in Section 3.3, the log–transformed measurements (log yi) are assumed to be realiza-
tions of Yi given by

Yi = log f(xi;Θi) + εi, εi ∼ Nni
(
0, Iniσ

2
)
,

with σ > 0 and as convergence criterion of the deterministic EM algorithm three significant
digits in the fixed effects were chosen.

Table 5.2 shows the minimum of the OFV after a successful completion of the EM al-
gorithm for several combinations of the physicochemical parameter values. For most of the
combinations of logPo:w and pKa no differences in the ability to describe the underlying
plasma data—represented by the OFV—are observable. The parameter estimate of the
clearance is independent of the drug distribution and thus independent of the physicochem-
ical properties. Also the estimate of ∆lco was not affected by the choice of pKa and logPo:w.
However, the estimate of Kblo:pla varied for the different combinations, indicating a corre-
lation between these parameters. In conclusion, this means one cannot distinguish between
the contribution of each physicochemical parameter to the tissue distribution process based
on plasma data.
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Table 5.2.: OFV value of the minimal lumped two compartment model based on different com-
binations of physicochemical properties found for levofloxacin in literature. The OFV indicates
that the physicochemical parameters have an impact, but only if outside a certain range, e.g.
−0.62 ≤ logPo:w ≤ 0.63.

logPo:w
pKa

(5.7, 7.9) (5.5, 8.0) (6.05, 8.22)
[1987] [2011] [2007]

0.63 [2012] −227.4 −227.5 −225.2
−0.62 [2000] −228.0 −228.0 −226.1
1.49 [2005] −183.3 −175.2 648.1
−0.42 [1998] −228.0 −228.0 −226.1

Thus, as the final model we chose a combination with the lowest OFV: pKa = (5.7, 7.9)
(Kitzes-Cohen [1987]) and logPo:w = −0.62 (Tamai et al. [2000]). The results of this model
are displayed in Table 5.3. If the results should be translated back into the full PBPK model,
the procedure described above can simply be executed backwards.

Table 5.3.: Results of the minimal lumped two compartment model: The typical values for the
population parameters are transformed to the original scale (e.g. Cl = elog Cl), BSV and WSV are
expressed as CV (e.g. CV% (Cl) = 100 ·

√
eω

2
Cl − 1).

Cl Kblo:pla ∆lco

Typical value 8.2 L/h 0.98 −0.2 log(L/min)

BSV [ CV% ] 26.3 % 6.3 % fixed to 23 %
η–shrinkage 2.0 % 3.1 % −4.8 %

WSV [ CV% ] 12.3 %
ε–shrinkage 14.2 %

OFV −228.0

The GOF plots in Figure 5.9 shows that the models adequately describes the data. Also
the VPC in Figure 5.10 shows good agreement between simulations and measurements w.r.t.
the typical profile as well as the observed variability. For all time points median, 10th and
90th quantile of the observations are included in the respective prediction interval of the
simulated quantiles. This indicates a good agreement of the estimated typical profile and
the median observations, as well as for the estimated and observed variability. Howsoever,
for t ≥ 12 h the prediction interval increases due to the low number of samples within each
bin (in average 6), which makes it difficult to assess whether the variability in the later phase
is correctly captured or slightly overestimated by the model.

Except for ∆lco, the shrinkage values are in an acceptable order of magnitude indicating
that the individual data is sufficient to determine EBEs for Cl and Kblo:pla. The negative
η–shrinkage for ∆lco indicates an under–prediction of the corresponding BSV. In this case
the BSV was fixed to a literature prior, and increasing the BSV would theoretically result in
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Figure 5.9.: Upper left plot shows observations against the individual predictions (IPred), upper
right plot shows observations against the predictions based on the population mean θ̂ (Pred). In the
upper graphs, solid line represents the identity line and red dashed line represent a smoothing spline.
Lower left plot shows the empirical distribution of the residuals, the red line indicates the estimated
density of the WSV. Lower right plots shows the residuals over time, red line shows the median of
the residuals for each time point.

unphysiological values of the cardiac output. The negative η–shrinkage could indicate that
BSV in tissue blood flow is not appropriately described by BSV in cardiac output. However,
because our analysis was only based on 24 patients we thought it is worth trusting the well
studied literature value and accepted the negative η–shrinkage.

The typical value of ∆lco = −0.2 corresponds to a correction factor of the cardiac output
of by −18 % on average.

As mentioned above, it was not possible to find information about the human Kblo:pla
for levofloxacin. However, Rodgers and Rowland [2006] reported the blood–to–plasma ratio
for the drug ofloxacin to be 0.92. It is reasonable to assume that both compounds have
similar physicochemical properties, because levofloxacin is the enantiomer of ofloxacin, i.e.
the dominating pharmacologically active moiety of ofloxacin is given by levofloxacin.

Instead of estimating Kblo:pla, the lumped partition–coefficients KL 1 and KL 2 as de-
scribed in Equation (5.13) could be estimated. Using the lumped partition–coefficients
would avoid the determination of the partition–coefficients for all tissues in each iteration
of the NLME estimation algorithm. As a consequence, the approach could be implemented
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Figure 5.10.: VPC for the lumped PBPK population analysis for linear (top) and log–scale (bottom):
The black bars and dots show the 10th, 90th and the 50th (the median) quantiles of the observations
for each time point. The numbers above each bar specifies the underlying number of observations at
this time point. The blue shaded area shows the 95th error band around the 5th and the 95th quantiles
of the simulated measurements, the red line shows the 95th error band of the median of the simulated
measurements. The dotted blue line shows the upper and lower range of the prediction interval of
the 10th and 90th quantiles.

almost as easily as a classical population PK model in standard NLME software tools. Obvi-
ously, as a consequence the distinction to the classical population PK approach diminishes.
However, using our approach has the crucial advantage that the mechanistically–derived
covariate relationships are considered and consequently correlations between the apparent
parameters are explicitly induced. As the case maybe, complex interactions and correla-
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tions between covariates and the associated impact on the physiology will be captured. As
Rowland [2014] stated “ignoring this issue can lead to unrealistic prediction intervals, and
conclusion”.

After all, using blood–to–plasma ratio instead of the lumped partition coefficients comes
with extremely useful advantages from a mechanistic modeling point of view:

• The estimated parameters can be used for the parameterization of the whole body
PBPK model and all advantages of PBPK modeling are accessible; in Section 5.3.3 an
example of this advantage is given.

• Beyond the impact of the mechanistically–derived covariates on the physiology, a nat-
ural correlation between the apparent PK parameters is induced based on the assump-
tion that the distribution into the cellular subspace is similar in all tissues.

Lastly, using two lumped partition–coefficient parameters results in the estimation of one
additional fixed effects parameter and eventually one additional random effects parameter
compared to the estimation of Kblo:pla and the associated BSV.

5.3.2. Comparison of Classical and Lumped Two Compartment Model

In this section the result of the analysis based on the minimal lumped PK model, described
in the previous Section 5.3.1, is compared with the results of the classical compartmental
analysis presented in Section 3.3. Both approaches provide an adequate description of the
data as shown in the VPCs in Figures 3.8 and 5.10 and in the GOF plots shown in Figures 3.7
and 5.9. There is a slight tendency that the classical model better predicts the individual
observations as the lumped model, while population predictions seem to be more appropriate
in the lumped model.

In the classical compartmental model four model parameters and the corresponding BSV
were estimated. In the lumped model approach two parameters and the corresponding
BSV, and one parameter—the correction factor—with fixed BSV were estimated. Because
the structure of both models was identical, the empirical model had more degrees of freedom
and it is obvious that a better description of the data can be expected. This can be observed
in the ’IPred vs. Observations’ and the ’Residuals vs. Time’ plots as well as in the smaller
WSV (CV% 10 vs. CV% 12, see Table 5.4). In their work Neckel et al. [2002] describe
the bio–analytical method used in the underlying studies and quantified the within– and
between day accuracy for the plasma assays to lie between 78.2 % to 106.9 %—i.e. they ob-
served mean deviations of −26.2 % to 6.9 % of the reference concentrations. In conclusion,
this means that both WSV estimates are in reasonable order of magnitude.

In Table 5.4 the parameter estimates are compared. To that end, the results of the new
approach were transformed into the classical PK parameters. This was done by randomly
drawing 1000 virtual patients with replacement from the underlying study population, and
Kblo:pla and ∆lco from the estimated distribution. Using the lumping methodology the
apparent parameters were derived. From the resulting empirical distribution the median
(identical to exp θ for the log-normal distribution) and CV, assuming a log-normal distri-
bution of the parameters, were estimated. The typical values are similar while the BSV is
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larger than in the classical compartmental approach. The lumped model integrated indi-
vidual information from the patients, the ’Pred vs. Measurements’ plots indicate that the
unexplained variability was slightly decreased in the lumped model. However, we think, the
objective of modeling is not to reduce the unexplained variability as much as possible, but
rather identify the ’true’ unexplained variability, even if this would lead to a worsening of
the model according to the objective function value. In this sense, we align ourselves with
Agoram [2014] questioning whether the same objective criteria on mechanistic model should
be applied as on purely data–driven models.

Table 5.4.: Comparison of the population PK parameters of the classical and the minimal lumped
modeling approach. Except for the clearance, the latter are based on drawing 1000 logKblo:pla, ∆lco

from the corresponding population distribution, sampling random patients from the study population
and estimating the typical values and WSV for the apparent PK parameters V1, V2 and Q assuming
a log–normal distribution.

Cl V1 Q V2

exp θ̂ classical 8.1 L/h 19.9 L 65.1 L/h 69.2 L

exp θ̂ lumped 8.1 L/h 17.8 L 56.8 L/h 73.8 L

BSV classical 27.3 % 46.4 % 38.5 % 53.8 %
BSV minimal lumped 26.3 % 23.4 % 15.1 % 30.0 %

WSV classical 9.9 %
WSV minimal lumped 12.3 %

OFV classical −286.5
OFV minimal lumped −228.0

In a last step the individual PK parameter estimates of the two approaches were com-
pared. The scatter–plot in Figure 5.11 shows the high correlation between both models. The
plot emphasizes the similarity between both models. The range of the individual apparent
PK parameter derived from the lumped model (11.0 L to 24.2 L, 38.7 L/h to 68.9 L/h and
38.1 L to 108.8 L in V1, Q and V2) is narrower as the of the classical compartmental analysis
(see Table 3.3, 10.9 L to 39.3 L, 25.2 L/h to 214.7 L/h and 31.6 L to 110.7 L in V1, Q and
V2). However, none of the models is the ’true’ model and to decide which model is more
appropriate is very subjective.

5.3.3. Population Prediction of ISF Data based on a lumped PBPK model

Based on the previous section, a fully parametrized PBPK model is available. In Sec-
tion 5.2.1 the methodology to predict tissue distribution based on tissue composition and
physicochemical properties of the drug was presented. Various assumptions enter these
predictions. Moreover, anatomical and physiological information are most likely affected
with uncertainty, which is difficult to assess. In this section we want to investigate the
performance of the tissue distribution model and make use of the unique situation to have
levofloxacin drug concentration measurements in the ISF of the adipose and muscle tissue.
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Figure 5.11.: Comparing the classical (y-axis) and the lumped (x-axis) model w.r.t. the individual
EBE of the apparent PK parameters V1,V2,Cl and Q expressed in fold change of the respective
typical parameter estimate in Table 5.4. All parameter, except V1, are strongly correlated.

The ISF measurements were obtained by the so–called retro- and microdialysis method. It is
important to know, that this technique—similar to the PBPK approach—underlies several
assumptions and only indirectly measures the tissue concentrations. In the next section the
microdialysis concept is introduced. Afterwards, the corresponding concentrations of the
PBPK model are derived and finally the predictions of the PBPK and the microdialysis
approach are compared.

Retro- and Microdialysis

We briefly explain the ideas, principles and limitations of the retro- and microdialysis tech-
nique; further information of microdialysis can be found in the comprehensive review Plock
and Kloft [2005].

Microdialysis is a sampling technique to approximate the concentration time profile of
a drug within the extracellular tissue space. Alternatively, the tissue concentrations can
either be determined by tissue biopsy or imaging technology in combination with radio–
labeled drug molecules. However, for the biopsy repeated samples over time are difficult to
obtain within the same subject, while imaging methods do not allow a direct measurement
of the concentration and allocation to a specific subspace.

In microdialysis experiments a pump, a probe and a vial are used. The probe is inserted
into the ISF and perfused by a perfusat (perf ) which is infused by the pump. The membrane
of the probe is permeable so that unbound drug molecules can cross the membrane and diffuse
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from the ISF into the perfusat and vice versa. The pump produces a constant flow rate of
the perfusat through the probe. After passing the probe, the perfusat is collected in a vial
over some time interval [t1, t2], e.g. 30 minutes. Finally, the dialysate concentration in the
vial CµD(t2, t1) is determined. As a result, the measured concentration CµD(t2, t1) is linked
to the average concentration Cdial(t) in the dialysate in this time interval

CµD(t2, t1) =
1

t2 − t1

t2∫
t1

Cdial(t) dt, t2 > t1.

The process is illustrated in Figure 5.12. Depending on the drug, the species and the insertion
occasion, the experimental parameters, e.g. the membrane permeability, the flow rate of the
perfusat and the collection interval have to be calibrated thoroughly.

Figure 5.12.: Cartoon of the microdialysis technique taken from Barbe et al. [2001]. The perfusat
perfuses the probe, the drug molecules cross the probes membrane and diffuse from the ISF into the
probe and vice versa. The dialysate is collected in a vial which is not displayed here.

The generic idea is, that the concentration in the dialysate Cdial only represents a
fraction—denoted as relative recovery RR—of the concentration in the ISF Cisf

Cdial = RR · Cisf and CµD(t2, t1) = RR · 1

t2 − t1

t2∫
t1

Cisf (t)

︸ ︷︷ ︸
=:Cisf (t2,t1)

dt, 0 < RR ≤ 1. (5.14)

Thus, to predict Cisf (t2, t1) based on CµD(t2, t1) the fraction RR has to be determined.
Assuming the drug exchange between tissue ISF and perfusat is similar in both directions,
the same experiment can performed with Cisf = 0 and Cperf > 0, where Cperf denotes the
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known inflowing concentration from the pump into the probe, which is usually set to 0 in a
microdialysis experiment. Hence, the relative drug loss is given by

RR :=
Cperf − Cdial

Cperf
. (5.15)

This experiment is called retrodialysis and usually forgoes the actual microdialysis measure-
ments before the drug is administered and Cisf = 0.

Obviously, the role of the relative recovery is very important. The uncertainty affected
with this estimate will be carried over to predictions of the tissue concentrations Cisf (t2, t1);
in particular, for compounds with low relative recoveries values, the uncertainty in the ISF
predictions will be amplified. As example, imagine the following situation:

• In the retrodialysis experiment a perfusat concentration of Cperf = 1 mg/L was chosen,
in the vial a concentration of CµD(t2, t1) = 0.8 mg/L was determined. The precision
of the analytical method is assumed to be proportional to the measured concentration
and with reasonable coefficient of variation of CV% 10. I.e. the relative recovery is
given by RR = 0.2 with 95% confidence interval of [0.04, 0.35], assuming that the
adjustment of Cperf was error–free.

• In the microdialysis setting a concentration of CµD(t2, t1) = 1 mg/L was determined;
the same proportional error of CV% 10 is assumed.

• The predicted average ISF concentration in the collection interval is given by
Cisf (t2, t1) = 1/0.2 = 5 mg/L. Incorporating the uncertainty in RR and in CµD(t2, t1)
the 95% prediction interval is given by [2.6, 22] mg/L.

In conclusion, for small values of the relative recovery (RR) already small variations will
have large impact on the prediction accuracy. On the other hand, the same considerations
with CµD, rd = 0.2 mg/L, i.e. a large relative recovery, would lead to a relatively narrow 95 %
prediction interval of [1, 1.5] mg/L.

The example illustrates how the error propagation influences the final predictions. The
accuracy of the microdialysis based predictions decreases with decreasing relative recovery
values. Usually, the retrodialysis experiment is only performed once, while the microdial-
ysis experiment is repeated several times to describe the full concentration time profile.
Thus, a potential error in the retrodialysis measurement influences all ISF predictions. To
successfully quantify the WSV, repeated measurements of the retrodialysis as well as the
microdialysis would be necessary.

Obviously, the determination of RR is flow dependent, for a slow flow rate the RR will
increase and vice versa. To further mitigate the risks of misspecification of RR, the robust-
ness of the RR w.r.t. different flow rates of the perfusat should be tested. However, there
are still unsolved issues, e.g. how the insertion of the probe impacts the surrounding tissue
and its kinetics or the recovery, for example Clough et al. [2002] observed that (i) “local
vasodilation, . . . , had a significant impact on dialysis recovery from the tissue space” and
(ii) “manipulation of local blood flow influenced the recovery”.

In summary, microdialysis is a helpful tool to predict in vivo tissue kinetics, however
it is very difficult to quantitatively interpret the results to quantify the accuracy of the
predictions.

88



5.3. Results

Modeling of Tissue Interstitial Fluid Concentrations

In this section the concentrations in the PBPK model which corresponds to the tissue ISF
concentrations and the assigned microdialysis measurements is derived. A fundamental
principle in the PK field is the assumption that after a certain time of a permanent infusion
the unbound drug concentrations reach distribution equilibrium in the body. How fast the
tissue-plasma equilibrium is reached, depends on the tissue distribution rate ktis = Qtis/(Vtis ·
Ktis:up), with half life log 2/ktis. Based on the physicochemical properties estimated in the
previous Section 5.3.1, tissue distribution half lifes of a typical patient are ∼ 14 minutes
for adipose and ∼ 40 minutes for muscle tissue, compared to ≤ 2 minutes for well-perfused
tissues like lung or kidney.

Under steady state conditions, interstitial concentration Ctis,isf (t) can either be related
to the unbound arterial or to the concentration leaving the tissue into the vein

Css
tis, isf = Css

up =
Css

up

Css
tis
· Css

tis =
Css

tis
Ktis:up

. (5.16)

From Section 5.2.3 and from Figure 5.13, one can infer that for some tissues Ctis(t)/Ktis:up 6=
Cup(t) during the distribution phase, i.e. in non–steady state conditions. Because the dis-
tribution into the tissue spaces is usually slower compared to the distribution within blood,
this has to be considered in the prediction of the unbound tissue ISF concentrations and we
assumed that the latter expression in Equation (5.16) corresponds to the ISF concentrations
Ctis, isf (t) = Ctis(t)/Ktis:up.

Instead of simulating the tissue PK profiles with the full PBPK model, again the lumping
technique was used. Because we aim for an appropriate description of adipose and muscle
tissue, both tissues were separated from the peripheral compartment in the minimal lumped
model and single compartments were assigned, see Figure 5.14.

Comparison

The microdialysis measurements CµD(t2, t1) represents the average drug concentration in
the collection time interval. In a classical compartmental population analysis Tunblad et al.
[2004] showed that the description in Equation (5.14) is more appropriate as using the so–
called mid point method, i.e. Cisf ((t2 − t1)/2) := CµD(t2, t1) is defined as the concentration
value at the middle of the time interval, to link CµD(t2, t1) and Cisf for brain microdialysis
data.

Above we have shown that WSV has huge impact on the prediction range, thus for
an appropriate comparison WSV has to be considered in the PBPK simulations. Because
the output of the model are ISF concentrations, they have to be corrected with the RR
to compare them with microdialysis measurements. Thus, in the simulations below the
uncertainty assigned to retrodialysis samples, as well as the uncertainty assigned to the
microdialysis is incorporated.

In addition to the bio–analytical uncertainty, the WSV also comprises uncertainty related
to model misspecification and error in the dependent variables (see Section 1.2) which has
to be considered. Because the WSV has not been estimated, we assumed the WSV to be
CV% 12, as derived in the analysis of plasma data. Because in general microdialysis data is
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Figure 5.13.: Non–steady state ISF tissue concentrations according to Equation (5.16) for adipose
(top) and muscle (bottom) after half an hour infusion of levofloxacin: solid line shows Ctis/Ktis:up
and dashed line shows Cup.

more error–prone as plasma data this is a reasonable and conservative approximation of the
lowest possible WSV one could expect in retro- and microdialysis samples. This is in line
with findings of Tunblad et al. [2004], who investigated microdialysis in vein and brain and
estimated a similar magnitude for the respective proportional error.

Finally, a comparison via a VPC was performed. Therefore, microdialysis measurements
were simulated according to the underlying study using the lumped PBPK model as de-
scribed above, incorporating BSV as estimated in Section 5.3.1 and WSV. These simulations
were compared to microdialysis measurements. In summary, the simulations were generated
using the following approach:

• For each patient draw a random parameter vector (log Cl, logKblo:pla,∆lco)T of the
BSV random effects model

Θi ∼ N3 (θ,Ω) ,
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Figure 5.14.: Lumped 4 compartment model where adipose and muscle concentrations are described
by their own compartments. The corresponding interstitial spaces form a sub-compartment in each
compartment, with instantaneous drug exchange. From the ISF the fraction RR of drug diffuses into
the microdialysis probe.

with θ and Ω fixed to the results obtained in the analysis of the plasma data in
Section 5.3.1.

• For each patient draw one residual εrd ∼ N
(
0, σ2

)
for the adipose, and one for the

muscle retrodialysis measurement—assuming an additive error on the log–scale, with
WSV σ of CV% 12. Assemble the residual, the patient’s perfusat and retrodialysis
sample to a simulated relative recovery according to Equation (5.15)

RRtis =
Ctis, perf − Ctis, µD · eεrd

Ctis, perf
.

• The microdialysis concentration is simulated based on RRtis and Equation (5.14).
This simulation already contains WSV due to the previous step. Of course, also the
detection of the concentration in the vial is error affected. Thus, a residual error
εmd ∼ N

(
0, σ2

)
with identical WSV σ2 of CV% 12 is added:

Ctis, µD(t2, t1) =

 1

t2 − t1
·
t2∫
t1

yRRtis · Ctis, isf (t) dt

 · eεmd .
• Please note, in this assessment the microdialysis measurements are not used in an

estimation context, but only compared to simulations based on the parameter estimates
obtained from using the plasma PK data and the above considerations.

The resulting simulations are compared with the observations using the VPC approach;
the comparison is shown in Figure 5.15. The width of the area of the prediction interval
indicate the huge impact due to the uncertainty in the determination of the relative recov-
ery. Moreover, the width also reflects the fact that only 5 to 13 measurements are used to
derive the quantiles, i.e. the 10th and 90th quantiles will nearly represent the complete range
of simulations and measurements for some time points. For the adipose tissue, the simu-
lated typical behavior as well as its variability show good agreement with the corresponding
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Figure 5.15.: Quantiles of the microdialysis observations and the model simulations for µD mea-
surements in adipose and muscle tissue. The black bars and dots show the 10th, 90th and the 50th

(median) quantiles of the measurements and for each time point. The blue shaded area shows the
95th error band around the 10th and the 90th quantiles of the simulated measurements, the red line
shows the 95th error band of the median of the simulated measurements, respectively. From the width
of the prediction interval the impact of the WSV can be obtained. For the adipose tissue the model
predictions and µD data are in adequate agreement. The fast increase and decrease in the beginning,
and the peak at around one hour after dosing is also predicted by the model. For the muscle µD
there is a slight disagreement between model predictions and measurements, the model predicts a
slower absorption in the tissue as observable from the data. The up- and down behavior of the curve
between five and seven hours results from the fact that the collection interval of the microdialysis
probe varies between one and two hours. Please note, for all subjects with µD measurements the
infusion duration was 30 minutes and no dosing–specific adjustment of the data as for the plasma
data had to be applied.

microdialysis measurements. This indicates that both approaches predict also similar ISF
concentrations.

For the muscle tissue the curves of the typical profiles deviates from the microdialysis mea-
surements. The distribution is predicted to be slower as observed in the data, i.e. the micro-
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dialysis measurement in the distribution phase are under–predicted, while in the elimination
phase they are over-predicted by the model. This behavior would be transferred to the ISF
level one–to–one. However, even if simulations and measurements of the muscle tissue only
moderately agree with each other, the typical AUC of the first 8 hours AUC8

0 =21.6 mg h/ml
predicted by the PBPK model is similar to the estimated AUC8

0 =22.1 mg h/ml obtained by
Zeitlinger et al. [2003] in a non–compartmental analysis.

The data was collected in different studies with different sampling schemes: in one study
comprising 6 patients, only samples after 12 hours were taken, while in the other studies
only samples ≤ 12 hours were taken. Thus, for non of the patients a full 24 hours profile
was available.

Overall, both approaches are in adequate agreement with slight deviations for the muscle
tissue. However, having in mind that the modeling results were obtained without fitting but
only predicting the microdialysis data, and the weaknesses of both approaches—most notably
the respective assumptions—the results are promising and suggest that the underlying tissue
distribution model is a useful tool to predict ISF tissue concentrations.

5.4. Discussion and Conclusion

In this chapter we successfully combined NLME and mechanistic PBPK modeling to analyze
population PK data. In detail, we worked out the following new aspects:

(1) Introduced mechanistically motivated BSV into the PBPK model.

(2) Presented a mechanistically–driven population PK analysis in a NLME context.

(3) Derived an interpretation of microdialysis measurements in the context of PBPK mod-
eling and tested the consistency of the a priori prediction of the tissue partition coef-
ficients of Rodgers et al. [2005b] and the microdialysis tissue data.

The mechanistically motivated BSV was based on literature information about the quan-
titative relationship between anthropometric patient variables and physiological parameters.
We demonstrated how such known relationships can easily be incorporated into a PBPK
model. However, in Huisinga et al. [2012] we have shown that the physiological differences
between patients due to changes in anthropometry in general only causes minor variability
in the PK compared to other, unknown sources of BSV, e.g. variability in the partition–
coefficients.

In the next step, we showed how the theoretically derived lumping approach can be used
in the analysis of population PK data and, depending on the objectives of the analysis,
is an equal competitor to the classical compartmental analysis. Based on the mechanism–
driven analysis of the population plasma PK data, we were able to adjust the physiological
information—namely cardiac output, and estimate missing parameters and the magnitude
of unexplained BSV which we assigned to the blood–to–plasma ratio, a surrogate for the
cellular distribution of levofloxacin. By doing so, a BSV in the tissue partition–coefficients
is introduced. The presented approach constitutes a compromise between a purely em-
pirical driven model building—which is per definition only data dependent—and a purely
mechanistic approach—which depends on in vitro data and literature information.
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In a next step it would be interesting to integrate a Baysian approach into the NLME
approach for parameters were prior information are available, e.g. similar as used by Krauss
et al. [2013, 2015], e.g. cardiac output (in the presented approach the prior distribution for
cardiac output was fixed to values obtained from literature and only the individual, posterior
mode (EBE) was determined).

The third point reveals an important aspects. The scope of Rodgers et al. [2005b] ap-
proach was to a priori predict the partition coefficient between tissue and unbound plasma;
their approach does not aim to predict concentrations within some subspaces of the tissue.
Moreover, a typical PBPK model is not developed in such detail that every tissue subspace
can be assessed. We examined how the Rodgers et al. [2005b] approach can be applied to pre-
dict the concentration in the ISF subspace of the tissue. Assuming steady–state conditions
and based on a so–called blood–flow limited tissue distribution, the ISF PBPK predictions
were defined as unbound tissue concentration leaving into the vein. These concentration on
the one hand reflect vascular space kinetics but also consider the tissue–specific distribution.
The in vivo microdialysis and the in silico population PBPK approach predicted similar tis-
sue kinetics and showed only slight deviation for the muscle tissue, see Figure 5.10. However,
compared to a purely data–driven model, for a mechanistically–driven model different model
diagnostic standards should be considered, see Agoram [2014]. Concludingly, although the
true kinetics are not known, the good agreement between the two independent approaches
is promising.

Ball et al. [2014] used similar ideas and verified their animal PBPK model with brain
microdialysis data obtained in rats. The model was then used for extrapolation to human.
In these extrapolations they also included BSV using the approach by Jamei et al. [2013].
However, neither a population approach to analyze the preclinical animal data was used,
nor the uncertainty associated with the microdialysis was incorporated.

There could be several reasons for the deviations observed for the muscle tissue. For
example, we have shown that the microdialysis based predictions strongly depend on the
retrodialysis experiment and the respective experimental parameters. In further studies, the
associated uncertainty should be investigated and quantified by repeating the retrodialysis
experiment. Additionally, with a repetition of the microdialysis experiment within the same
subjects after a wash–out phase, the consistency of the concentration–time profiles could be
investigated. At the same time, the plasma kinetics should be measured to confirm that no
intra–subject variability occurred.

On the other hand, the deviations in the muscle tissue could also be caused by model
misspecification in the PBPK model: the tissue distribution model simplifies the tissue to
basically one well–stirred compartment and only predicts the average tissue concentration.
Moreover, in the PBPK model we assumed that composition and perfusion of the adipose
and muscle tissue is identical all over the body. Concludingly, we expect identical kinetics
in a tissue independent from the exact location, for example muscle tissue in the legs and
arms. In further studies this hypothesis could be challenged by conducting a microdialysis
experiment with simultaneously measuring the drug concentrations in the same tissue (e.g.
muscle) at different locations (e.g. right/left arm and right/left leg).

The approximation of the ISF predictions in the PBPK model (see Equation (5.16))
is based on the same assumptions underlying the tissue distribution model by Rodgers
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et al. [2005b]: the tissue distribution only depends on passive diffusion and for a continuous
drug infusion, steady state can be reached, i.e. unbound drug levels in all body fluids are
identical. Based on several microdialysis studies, Liu and Derendorf [2003] conclude that
this “does not always hold true because many studies have shown the discrepancy between
free drug levels in plasma vs. tissue”. However, for levofloxacin we showed that incorporating
the uncertainty in the microdialysis based ISF predictions, the unbound tissue predictions
based on the modeling and microdialysis approach are in good agreement. Concludingly, we
cannot support their conclusion.

The uncertainty, in particular in the assumptions of the tissue distribution model, is one
of the major weaknesses of the presented mechanistic population PK approach. A future
aspect to gain further confidence, would be to apply and test the new approach for other
drugs. A verification of the results could consists of determining the blood–to–plasma ratio
ex vivo and compare it to the estimated value.

Compared to the microdialysis approach, the presented modeling method to predict the
target concentrations is only based on plasma data which is easier to assess. Furthermore,
once a model is established and validated, not only the tissue kinetics can be predicted,
but also patients or sub–populations characteristics can be taken into account, e.g. obese
patients or disease specific modifications of the physiology. However, if a classical compart-
mental analysis is preferred, the approach by Pilari and Huisinga [2010] should be considered
to decide whether the concentrations in the central or the peripheral compartment are more
appropriate predictors of the target concentrations driving the efficacy, depending on the
tissue and on the drug properties.

In the introduction of this chapter, the objectives were motivated by emphasizing the
important link between PK and efficacy of antibiotics. We showed that the derived PBPK
for levofloxacin adequately describe the plasma as well as the tissue ISF concentrations. In a
next step, the relationship between plasma and tissue PK derived indices, e.g. the duration
of time over MIC could be investigated. If necessary, correction factors could be derived to
minimize the potential differences. Furthermore, as population PK models are already used
for the treatment individualization and optimization, e.g. see Vinks [2002, 2014], population
PBPK models could be utilized for the same purpose with even more precise individualiza-
tion and with the advantage to provide predictions for the drug concentrations at the target.

The underlying chapter was based on levofloxacin. Nonetheless, this chapter does not
only cover results of the levofloxacin analysis, but also introduces new principles and ideas
to combine the different methodologies—which can also be used and applied to other drugs,
presumed the mechanism of distribution is known. The input of the presented mechanism–
driven modeling approach is the accumulated prior knowledge about the drug, species and/or
study population, and the data collected in a clinical study. Based on this—at the time
available—information a PBPK model is defined. In a next step, the reference physiology is
individualized based on the individual covariates of the study participants. In order to reduce
the complexity of the PBPK model and to identify the parameters which can be estimated
based on the plasma PK data the lumping–approach is applied. Finally, the individual
physiology, the minimal lumped PBPK model and the NLME approach is integrated into
the analysis of the plasma PK data. Based on the results of this analysis a population

95



5. Mechanistic Population Modeling in PK

PBPK model can be created. Furthermore, the determined EBEs can be used to generate
individual PBPK models for each subject of the study. The new information generated by
this analysis can be fed back to the accumulated know–how of the drug, species and/or
study population. Furthermore, the population PBPK model can be used for simulations,
extrapolations and planning of further clinical trials, e.g. a study in a pediatric population.
This represents a further contribution to the learn & confirm paradigm across different
stages of drug development. A schematic presentation of the new approach was shown in
Section 5.1 in Figure 5.1.
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6. Quantitative Psycholinguistics: Modeling the
Competition in the Time Course of Spoken
Word Recognition

The following chapter is planned to be published and originated from on a cooperation
with Prof. Reinhold Kliegl, Institute of Cognitive Psychology, University of Potsdam. The
chapter focuses on the modeling aspects and only briefly the psycholinguistic background is
introduced.

6.1. Introduction

The last chapter, as well as the illustrating examples in part I dealt with repeated measure-
ment studies in pharmacokinetics. In this chapter, we switch to a different discipline—the
field of psycholinguistics. Psycholinguistic research investigates the development and com-
prehension of language using quantitative assessments of language–related behavior to decide
between theoretical propositions. In one very prominent research paradigm subjects’ direc-
tion of gaze at a computer monitor is measured at a very fine time scale (e.g., every ten
milliseconds) while they listen to a sentence describing the content of the display. This ex-
perimental approach is used “to exploit the systematic relationship between eye movements
and speech processing“ (Huettig et al. [2011]) and is called the visual word paradigm (VWP).

The VWP was first introduced by Cooper [1974] and reached new prominence twenty
years later Tanenhaus et al. [1995]. It is well established that there exists a relationship
between eye movements and the time–course of mental comprehension of spoken language
(Rayner [1998, 2009]). Therefore, analysis of the eye movements afford inferences about
how comprehension unfolds over time. For example, Cooper [1974] experiments revealed
that the participants’ attention (indicated by the direction of gaze) was attracted to those
objects that where mentioned by the speaker, e.g. the likelihood of looking at the picture
of a dog increased if a dog was mentioned by the speaker. Consequently, it is possible to
check whether a systematic manipulation of part of the speech input, often quite subtle,
leads to an effect on when and for how long an object is looked at. For example, we can ask
whether phonologically or semantically similar words lead to different time courses in the
direction of gaze, how the time course of language comprehension differs between languages
and how it changes as children develop their language ability. There is research on how
language comprehension changes across the adult life span, on how diseases such as stroke
or Alzheimer affect language–related processes, and on many other questions. An overview
of topics addressed with the VWP can be found in the review by Huettig et al. [2011].

In the present work, data reported in a study conducted by Magnuson et al. [2003] were
reanalyzed. The goal of this study was to investigate how geometric objects described by
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phonologically similar words compete for attracting the gaze. In a first phase, partici-
pants were trained to associate simple, artificial words, e.g. ’pibo’, with geometric figures.
Each word had three so–called neighbors or distractors: an onset–matching neighbor called
’cohort’, which differed only in the final vowel, e.g. ’pibu’, an onset–mismatching neighbor
called ’rhyme’, which differed only in its initial consonant, e.g. ’dibo’, and one dissimilar item,
which differed in the first and last phonemes, e.g. ’dibu’. After participants had learned the
associations, the experiment started and the geometric object (e.g. associated with ’pibo’)
was displayed with two arbitrary unrelated geometric objects and one of the three distractor
objects. Thus, the experiments tests whether, e.g., a cohort or a rhyme distractor object
leads to a stronger distraction from the target item than an unrelated distractor object. The
experiment was repeated with different words and under varying distractor conditions. For
the analyses, the measurements were aggregated for each participant by experimental con-
dition and time bin. For example, for a given participant, the rhyme neighbor was used as a
distractor in 16 experiments. At time point 2 s the participant fixated the target in 12 out
of the 16 experiments. Thus, the result was provided as relative frequency of 0.75 = 12/16
target fixations at time 2 s.

From a modeling perspective this study and the recorded measurements differ in some
interesting features from the population PK setting used in the previous chapter. Eye move-
ments were tracked with a high temporal resolution; the number of samples and sampling
times were identical for all participants. Moreover, the experiment was repeated with dif-
ferent words (i.e., across experiments). Hence, one not only has repeated measurements
over time, but the experiments were also repeated under identical and varying experimental
conditions. Magnuson et al. [2003] reported the relative frequency of the target, distractor
and unrelated item fixations over time under different experimental conditions. Another
difference to PK data is that there are almost no missing data, but the eye movement itself
is a relatively noisy process.

As far as the current practice in the analyses of these kind of eye movement data is
concerned, Mirman et al. [2008] identified three gaps: (i) appropriate analysis of the time
courses, (ii) characterization of individual effects—that is the description and quantification
of the BSV distribution, and (iii) interpretation of individual differences—meaning identify-
ing factors that explain inter–individual differences. Mirman et al. [2008] suggest to use linear
mixed effects modeling to address these gaps. As a structural model they used a polynomial
function describing the average eye movement time–course and exemplified their approach
based on the dataset by Magnuson et al. [2003]. In their analysis they only considered the
measurements within time intervals they had identified to be theoretical importance. For
example, in this time interval the relative frequency of target fixation increases over time.
Mirman et al. [2008] modeled this increase with a polynomial function with degree 3, which
obviously converges to ±∞, a value which is outside of the range of possible measurements
[0, 1]. Therefore, their model is only applicable in this narrow time window and has no
predictive value beyond. In addition, the model parameters are difficult to interpret: E.g.
what does it mean that the typical value of the coefficient of the quadratic order term is
−0.2264 for the cohort distractor vs. −0.1476 for the rhyme distractor?
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Another drawback of the approach by Mirman et al. [2008] is that target and distrac-
tor fixation were analyzed independently of each other. Obviously, there is a competition
between both and the time courses are strongly correlated. Indeed, from a theoretical per-
spective, one could argue that the quantification of the competition between target and
distractor is the most interesting question of this experiment. With independent analyses
one arrives only at an indirect rather than a direct assessment of the most relevant piece of
information.

Here we propose an alternative, more comprehensive approach which we denote as the
’competition model’. For our analyses, we used the same dataset as Mirman et al. [2008],
but propose a structural model that takes into account the competition between target and
distractor and, in addition, uses a parameterization that allows easier interpretation of the
estimated parameter values. To this end, the analysis incorporates all data from the target,
distractor and unrelated item fixations simultaneously. As a consequence the information
is utilized more effectively. The analysis was performed within the NLME framework using
the EM algorithm described in Section 3.1.

Moreover, we explicitly take into account that the originally measured data are discrete,
i.e., at time point t the participant fixated k out of n times the target. Naturally, the tuple
(k, n) contains more information than the aggregated version the fixation proportion k/n.
Unfortunately, the original data in the form (k, n) was not reported in the dataset and we had
to retrieve k and n according to the information contained in the publication by Magnuson
et al. [2003]. To take into account the stochastic nature of the experiment, we assumed a dis-
crete stochastic distribution describing the WSV and combined this with a NLME approach.

In summary, we complement the gaps identified by Mirman et al. [2008] in the analysis
of eye–movement time courses with the following issues:

(i) The structural model should

• be capable to describe and predict the full time course of measurements,

• be able to improve the interpretation of the time course, compared to e.g. only
visual inspection of the raw data, or simple descriptive statistical analysis,

(ii) The extraction of information contained in the data should be optimized, e.g. by
incorporating the competition between the different competitor items and by taking
also into account the absolute number of experiments that were used to estimate
the relative frequencies of target, distractor and unrelated item fixations. Thus, the
modeling uses much more of the information contained in the data delivered by this
experiment than previous analyses.

In the next section the details of the study by Magnuson et al. [2003] are briefly described.
Subsequently, the structural model to describe the time–course of the probability to look at
the target, distractor and the unrelated item is introduced. This structural model is first
applied in a naive pooling analysis. This analysis revealed first insights in the model and
the data. Based on these results, a NLME analysis is conducted to quantify the distractor
effects as well as the BSV and WSV. In a last step the discrete data is analyzed using an
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modified NLME approach, where the so–called Dirichlet–multinomial distribution is used as
WSV distribution.

6.2. Material and Methods

The study was conducted by Magnuson et al. [2003] and comprised N = 16 participants.
The experiments were performed on two consecutive days. Each day started with a training
session, followed by the experimental trials. The objective of the training was to have par-
ticipants learn associations between geometric figures and short novel words. The geometric
figures were randomly created before the start of the experiment, ensuring that figures are
comparable in memorability. Each word, e.g. ’pibo’, had three distractors with an associated
geometric figure each: a (cohort) neighbor, which differed in the final vowel, e.g. ’pibu’, a
(rhyme) neighbor, which differed in its initial consonant, e.g. ’dibo’, and a dissimilar item,
which differed in the first and last phonemes, e.g. ’dibu’. The frequency of the items were
controlled during the training and separated into low and high frequency occurrence.

Figure 6.1.: A cartoon of the arrangement displayed to the participants (of course, without the
notations). The participant heard a word and four different item were shown: one of the items (the
target) was associated with the spoken word, one or none of the figures belonged to the phonological
distractor of the word, and two or three items were phonologically unrelated to the spoken word.

In total 16 sets of words were trained. During the actual test each item appeared 6
times, once with a ’cohort’, once with a ’rhyme’ and four times with ’none’ distractor (e.g.
including the dissimilar item), resulting in a total of 96 trials, 64 without a distractor, 16
with a ’cohort’ distractor and 16 with a ’rhyme’ distractor. The experiments were conducted
according to the description by Magnuson et al. [2003]

(1) A central fixation cross appeared on the screen. The participant clicked on the cross
to begin the trial.

(2) After 500 ms, four shapes appeared, see Figure 6.1. After 750 ms, the participant
heard the instruction ’Look at the cross’ through headphones. The participant fixated
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the cross, clicked on it with the mouse, and continued to fixate the cross until they
heard the next instruction (as they had been trained).

(3) 500 ms after clicking on the cross, the instruction was given, e.g. ’Click on the pibu’.
150 ms after the participant clicked on an item, all four items disappeared.

The description above reflects the experimental protocol. Importantly, however, compliance
was not controlled during the test. It is worth mentioning, that in the analysis and dataset
of Magnuson et al. [2003], only successfully performed trials were included, i.e. these where
the correct object was clicked in the last step. Moreover, only the relative frequencies were
reported, i.e. the dataset contained the following type of record: at time 2 seconds the tar-
get fixation proportion was 0.875, instead of providing the original results, e.g. 14 out of 16
correct accomplished experiments.

For the discrete modeling approach, we aimed at recreating the original measurements
by assuming that for a ’cohort’ and a ’rhyme’ distractor at most 16 trials and for the
’none’ distractor most 64 trials were performed. Based on each relative frequency value
k/n, we tested which values for the original k and n were most appropriate under these
considerations. Because the relative frequency values were rounded to the 3rd digit, the
recreated original values might be inaccurate. This might marginally impact the results of
the following analysis, however the conclusions for the new approach we present here are
not affected by this.
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Figure 6.2.: Raw data of Magnuson et al. [2003]. The plot shows the target fixation proportions of
the trials without a distractor (condition 3). The black crosses depict the measurement of the three
subjects which deviate from the rest of the population. These subjects also deviate under the other
experimental conditions. Hence, they were excluded from the analysis.

For simplification, the analysis was only based on the measurements obtained on the
second day. On the second day, the participants were already used to the experimental
procedure and consequently eye movements were less noisy.

As exemplified in Figure 6.2 for the experimental condition where no distractor was
present, we identified three participants with deviating eye movement profiles. As the same
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deviation is present for the other experimental conditions, for simplification these three
subjects were excluded from the analysis. Moreover, for the underlying analysis we ignored
that there were differences in the training frequency of the different words—as this was
balanced between the distractor conditions we expect this to be negligible.

In summary, the dataset we used for our analysis contained 13 participants and we fo-
cused on the impact of the distractor—whether a cohort distractor (condition 1), a rhyme
distractor (condition 2) or none distractor was present (condition 3).

Later in this section, we will compare two so–called nested models with each other. To
decide which model more appropriately describes the data, the so–called likelihood ratio test
(LRT) will be applied which is a widely used statistical test for this purpose.

The likelihood ratio test
The LRT is a statistical test to decide whether one model—the alternative model M1—
statistical significantly better describes the underlying data as the null model M0. The LRT
can be used, if the two modelsM1 andM0 are nested, i.e. the alternative and the null model
are identical, except that in the null–model only a subset of parameters of the alternative
model are estimated, and the remaining parameters are fixed to pre-chosen values. The
statistical hypothesis can be formulated as:

H0 : β = β0 versus H1 : β = β1,

with β0 ∈ Υ0 = {b1} × · · · {bk} ×Υβ(k+1) × · · · ×Υβ(p) , β1 ∈ Υ1 = Υβ(1) × · · · ×Υβ(p) , with
k > 0 and (b1, . . . , bk)

T ∈ Υβ(1) ×· · ·×Υβ(k) , where Υβ(l) denotes the parameter space of the
l-th component of β, for 1 ≤ l ≤ p. Under the assumption of some regularity conditions, e.g.
that bl is an interior point of Υβ(l) , for all 1 ≤ l ≤ k, the respective test statistic is defined
as the ratio of the maximum likelihood functions

Λ = −2 log

max
β∈Υ0

L(β; y)

max
β∈Υ1

L(β; y)

 . (6.1)

Wilks [1938] showed that in limit (regarding the number of subjects) the distribution of
Λ converges to the χ2

k distribution with k degrees of freedom. Although, in practice the
number of subjects is always limited, and often rather small, the Wilks theorem is used
to approximate the distribution of Λ by the χ2 distribution. I.e., if the type–one error is
chosen to be α = 5%, and the two models M0 and M1 are differing in 1 parameter, e.g.
β1 = (β1 (1), . . . , β1 (p))

T and β0 = (β0 (1), . . . , β0 (p−1), 0)T , the null hypothesis H0 : β = β0

will be rejected if Λ > c, where c is the quantile function of the χ2
1–distribution, evaluated

at 1− α.

The LRT is a frequently used tool in model development, e.g. see Bonate [2011]. The cor-
responding mathematical details, e.g. the proof of Wilks theorem can be found in Lehmann
and Romano [2005].

102



6.3. Results

6.3. Results

6.3.1. The Structural Model: Integrating the Competition between Target,
Distractor and Unrelated Items

The objective of the analysis was to describe the time course of the participant’s target
recognition and to what extent a distractor influences this process.

We describe this process by describing the underlying probability to fixate the target
ptar(t) : R≥0 → [0, 1], or the distractor pdis(t) : R≥0 → [0, 1] or the unrelated items
punrel(t) : R≥0 → [0, 1] over time. Because, the three items compete for the participants’
attention, the associated probabilities are strongly correlated. Yet, in the past, this com-
petition was not considered in the analysis of such data; the three curves were analyzed as
independent time series. I.e. the nature of the underlying process was neglected and the ad-
ditional information was lost and ignored. For example, the observation that a participant’s
fixation switches between the target and the distractor, contains different information than
the observation that the fixations move randomly between all displayed items. Thus, the
interaction between the items should be captured by the model. Our model captures this
information by assuming that the probability to look at one item changes over time and is
constantly exchanged between the three items, while maintaining the constraint that the
participant had to look somewhere ptar(t) + pdis(t) + punrel(t) = 1 for t ≥ 0.

Another implicit consideration is that the probability time course is continuous. This en-
sures a correlation between two consecutive time points, i.e. the random variables describing
the occasion of eye fixation at time tk and tk−1 are not independent of each other.

The following following ODE system was developed to fulfill the properties mentioned
above and to describe the general trend observable in the data. The system comprises one
ODE for each probability ptar, pdis and punrel, describing the interaction between the three
probabilities, while maintaining the above constraints. A schematic view of the model is
shown in Figure 6.3 and the ODE is given by

d

dt
ptar(t) = kdis→tar(t) · pdis(t) + kunrel→tar(t) · punrel(t)

− (ktar→dis(t) + ktar→unrel(t)) · ptar(t) (Target)
d

dt
pdis(t) = ktar→dis(t) · ptar(t) + kunrel→dis(t) · punrel(t)

− (kdis→tar(t) + kdis→unrel(t)) · pdis(t) (Distractor)
punrel(t) = 1− ptar(t)− pdis(t) (Unrelated)

with kv→w(t) = Kbase +Kv→w δ(t), for v, w ∈ {tar,dis, unrel}, v 6= w, where δ(t) = th

th
1/2

+th

denote a time delay for the on-set of the reaction. The incorporation of a time delay was
necessary, because we observe a delayed response after starting the experiment in the mea-
surements, see e.g. Figure 6.2. This delay can either be interpreted as a reaction process,
or it represents an artifact of the poorly defined and controlled starting conditions of the
experiments; e.g. that the eye movements were already recorded nor the experiment started
and/or ensuring that the participants fixated the cross in the middle. The Hill coefficient
h denotes the steepness of the increase in kv→w; for large values of h, the time delay term
can be interpreted as a continuous implementation of a lag time tlag, i.e. kv→w(t) = 0, for
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t < tlag, and kv→w(t) = Kv→w, for t ≥ tlag. The half time parameter t1/2 denotes the time
where the rate parameters kv→w(t) reaches half of its maximum value Kv→w.

The initial state of the ODE system in Equation (6.2) is given by the observed values for
ptar(0), pdis(0) and punrel(0). These values were read out of the dataset. If the participants
followed the protocol the initial states are ptar(0) = pdis(0) = 0 and punrel(0) = 1.

The baseline rate Kbase was incorporated to arrange a baseline flow between all com-
partments, thus it controls the equilibrium state for t → ∞ of the system. In Figure 6.4
the behavior is illustrated for small and large value of Kbase . Introducing the baseline rate
Kbase was necessary to ensure that a minimum probability to look at one of the three items
retains, i.e. lim

t→∞
pl(t) > 0, l ∈ {tar, dis,unrel}.

Figure 6.3.: Schematic representation of the model: three compartments describe the probability to
look at the target, the distractor and the unrelated item. The three compartments are connected with
rates describing the probability exchange between the compartments.

In summary, the model parameterization can be interpreted in the following way. The
parameters Kbase , h and t1/2 affect all rate parameters kv→w to correct for possible delays
in the execution of the experiment and to avoid that ptar, pdis, punrel → 0; in this sense
these parameters are nuisance parameters. The more interesting parameters are the rates
Kv→w. Comparing these values leads to an interpretation of the underlying process. E.g. in
general, the target is recognized at one point and it is expected that Kdis→tar > Ktar→dis and
Ktar→unrel,Kdis→unrel ≈ 0. For a cohort distractor, where the distractors first consonant is
identical to first consonant of the target, and the second consonant differs, it is expected that
Kunrel→tar ≈ Kunrel→dis and Kdis→tar � Ktar→dis while for the rhyme distractor, where the
first consonant differs and the second consonant is identical, it is expected that Kunrel→tar >
Kunrel→dis.

In the following section this model is denoted as the ’competition model’.

6.3.2. Naive Pooling Analysis of the Stratified Dataset

Before the NLME analysis was conducted, the naive pooling approach as described in the
Appendix 9 (page 128) was applied for each experimental condition separately (’cohort’,
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Figure 6.4.: Illustration of the impact of Kbase : green lines show the probability of target fixation,
blue line shows the probability of distractor fixation, therein the solid lines represents a small value
for Kbase and the dashed line a larger value for Kbase .
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Figure 6.5.: Curve showing the time delay of the parameters. The larger the Hill coefficient is, the
steeper the curve. The vertical and horizontal dotted line indicate the time t1/2 where half of the
parameter value is reached.

’rhyme’ or ’none’ distractor). The goal was to examine the ability to describe the data by
this structural model, to test which parameters can be identified and to have robust initial
estimates for NLME analysis.

The measurements depict frequencies of target, distractor and unrelated item fixations,
and the competition model predicts the associated probabilities, i.e. measurements as well
as predictions lie in [0, 1]. The WSV level is described by an additive error model, to
avoid that P (Y > 1) > 0 or P (Y < 0) > 0 the data as well as the model f are logit-
transformed (logit : (0, 1) → R with logit p = log(p) − log(1 − p)). Thus, it is assumed
that the logit-transformed observations ycohort,yrhyme,ynonel (each containing the mea-
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surements of all subjects under the respective experimental condition), are realizations of
Ycohort,Yrhyme,Ynone with distribution defined by

Yl = logit f(x; θl) + εl, εl ∼ Nnl
(
0, Inlσ

2
l

)
,

for σl > 0, and distractor l ∈ {cohort, rhyme, none} and x = (t1, . . . , tn)T containing the
measurement time points which were identical for all three distractor. The initial conditions
of the system were fixed according to the experimental conditions; i.e. the participants
fixated the unrelated item at the beginning of the experiment: pdis(0) = ptar(0) = 0 and
punrel(0) = 1, because the logit function is not defined for 0 and 1, a threshold c ∈ (0, 1) is
chosen and observed and predicted values ≤ c were replaced by c and values ≥ 1 − c were
replaced by 1− c.

The naive pooling analysis revealed that not all model parameters could be identified
successfully. To detect the parameters which are not identifiable, the following procedure
was performed. In a first attempt, for the three experimental conditions, all model param-
eters were estimated. However, the respective Hessian −∇2

θ log pYl(logityl; θ̂l) evaluated at
the estimates θ̂l was not positive definite for all l ∈ {cohort, rhyme,none}. According to Gill
and King [2004] this ”can only be caused by multicollinearity or by including more explana-
tory variables (the parameters) than measurements“. Because obviously the latter is not
the case, the model parameters are highly correlated and not all of them can be identified
successfully. Thus, one parameter at a time was excluded and the identifiability according
to the above criterion was tested. The results and the final parameterization are shown
in Table 6.1. Thereby, the parameterization is not unique and different parameterizations
provide comparatively adequate description of the data. However, the parameterization
which is most plausible was chosen, i.e. it is assumed that the physiological recognition
process goes via unrel→ dis→ tar or unrel→ tar and the competition model is parameter-
ized by Kbase ,Kunrel→tar,Kunrel→dis,Kdis→tar, h and t1/2. Moreover, the results are in good
agreement with the expectations that the distraction by the cohort distractor seems to be
more pronounced in the first time period as for the rhyme distractor, indicated by a larger
Kunrel→dis in comparison to Kunrel→tar.

The resulting probability–time profiles for all three conditions is shown in Figure 6.6.
The model adequately describes the time–trend for each condition.

The resulting parameter value are in line with the visual impression of the data: the
probability to look at the target increases faster if no distractor is present (’none’ distractor).
For the ’none’ distractor, the model also provides the most appropriate data description
indicated by the smallest WSV. This is in line with the considerations made earlier because
eye movements are per se a volatile process, i.e. also during fixation of an object the eyes
might shortly sway to another object within the field of view. Because in the ’none’ distractor
case the eye fixation of the four displayed objects is only assigned to ’unrelated’ or ’target’
instead of ’unrelated’, ’target’ and ’distractor’ the noise in the data is decreased.

6.3.3. Auto–Correlated Residuals

The competition model and the parameterization are now identified. Looking at the indi-
vidual participant’s data, which is the basis for the NLME analysis, we observe that the
time–course of the relative fixation proportion is a discontinuous process, see for example
Figure 6.7. This observation follows from the considerations that:
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Figure 6.6.: The plots shows the raw data of the 13 participants for each experimental condition:
’cohort’, ’rhyme’ or ’none’ distractor (from left to right). The fixation proportion of the unrelated
(red squares), target (green dots) and distractor item (blue diamond) and the results of the naive
pooling analysis (corresponding colored lines) are displayed.

Table 6.1.: Results of the naive pooling approach. The parameter estimates are transformed to the
original scale, e.g. Kbase = elogKbase . In brackets the RSEs in [%] are displayed.

cohort rhyme none

Kbase [1/s] 0.11 (7.4) 0.11 (8.0) 0.11 (5.9)
Kunrel→tar [1/s] 1.2 (19) 2.5 (11) 2.9 (3.3)
Kunrel→dis [1/s] 2.3 (9.5) 0.55 (16) –
Kdis→tar [1/s] 5.0 (8.3) 2.5 (8.3) –
Ktar→dis [1/s] Not identifiable Not identifiable –
Ktar→unrel [1/s] Not identifiable Not identifiable Not identifiable
Kdis→unrel [1/s] Not identifiable Not identifiable –
h [–] 2.4 (6.7) 3.0 (9.9) 3.1 (4.5)
t1/2 [s] 0.67 (9.3) 0.66 (9.2) 0.62 (3.0)

WSV σ2 [−] 1.1 1.3 0.74

• the fixation of an object usually lasts longer as the very short sampling step, the
measurement within an individual are often constant over several samplings implying
high auto-correlations,

• the minimal change in the fixation proportion is always 1/#{trials}.

In conclusion, the description of such occasionally constant data with a continuous model
generates auto-correlated residuals. For example, if the model over-predicts the measurement
at time tij , there is increased likelihood that it will also over-predict the next measurement
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at time ti j+1. As a consequence, the assumption of independent residuals is violated in the
underlying situation.

To exemplary investigate the impact of this violation on the parameter estimation the
following approach was considered. First, an arbitrary subject and condition which seems
to show auto–correlated measurements was picked (ID 14 and Condition cohort) and the
model was fitted to the data (using least-squares on the logit-scale, see the first stage of
the two–stage approach in the Appendix 10, page 129). As shown in Figure 6.7 the model
very adequately describes the time trend of the measurements. The left plot in Figure 6.8
demonstrate the presence of auto-correlation.

In the next step the individual estimates were used to simulate a profile and create auto-
correlated residuals. To create auto-correlated residuals, we incorporate a correlation matrix
P ∈ Rn×n into the error model

Y = P · (logit f + ε)

with Pi,j = 0 except P1,1 = 1, Pj,· = Pj−1,· ·Xj and Pj,j = 1−Xj ,

where Pr,s denotes the rth row and sth column of P , with ε ∼ Nn
(
0, Inσ

2
)
and Xj ∼

Binomial(n = 1, π = 0.7), for 2 ≤ j ≤ n. The probability π = 0.7 was chosen manually by
visual inspection of the results. Note, the WSV matrix P · Inσ2 is no longer diagonal.

For example, for n = 3 measurements and X2 = 1 and X3 = 0 as realizations of Xj the
matrix P is given by

P =

1 0 0
1 0 0
0 0 1

 .

Finally, the simulated auto–correlated measurements were fitted to the model—ignoring
the known auto–correlation—and compared with the ’true’ input profile. The results are
shown in Figure 6.8. The right plots indicates that (i) the above approach is able to create
realistic simulations and (ii) even with neglecting the auto–correlation in this analysis, the
’true’ profile could be reproduced. However, the residuals of the simulated measurements are
in average larger than the residuals in the real measurements. Due to the auto–correlation,
the WSV seems to be slightly overestimated.

In conclusion, although we are aware that the measurements are auto–correlated, the
above considerations and results should emphasize that the impact is negligible. Although
there exists approaches to deal with such auto–correlated residuals, e.g. see Karlsson et al.
[1995] or coarse–graining, i.e. an artificial thinning of the data, for simplification in the
following the auto–correlation is ignored and the violation of the assumption of independent
residuals is accepted.

6.3.4. The NLME Analysis

In this section a NLME analysis of the dataset is conducted with the objective to quantify
the effect of the rhyme and cohort distractor and the BSV as well as the WSV. The vi-
sual inspection of the data and the results of the naive pooling approach suggest that there
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Figure 6.7.: Autocorrelation: The left plot shows the data of subject 14 under condition cohort.
The line indicates the individual least–squares fit. The right plot show the simulated auto–correlated
measurements: The solid line shows the ’true’ model which was used for simulation, and the dotted
lines represents the fit to the simulated data ignoring the auto–correlation.
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Figure 6.8.: Residuals of the least–squares fit neglecting the auto–correlation for the target fixation
of the observed data for subject 14 (left) and the simulated data (right).

are differences between the different experimental conditions. Using the LRT introduced in
Section 3.3 in combination with the NLME approach this question can be addressed quanti-
tatively. To investigate whether the distractor has an effect, the dataset was analyzed under
the null hypothesis H0 ’the distractor has no effect’ and under the alternative hypothesis
H1 ’the distractor has an effect, and the effects of cohort and rhyme differ’.
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Both models were identical in the following aspects:

• Structural model f(xi, θi) given by the competition model, i.e. a three compartment
model, where xi contains the sampling time points t1, . . . , t101 and the different distrac-
tor conditions cond ∈ { cohort, rhyme,none}, for 1 ≤ i ≤ 13. The model is parameter-
ized by logKbase , logK31, logK32, logK21, log h and log t1/2. The log–transformation
of the parameters was chosen to avoid non–positive parameter values.

• The random effects model is given by

Θi ∼ N6 (θ,Ω) ,

with θ ∈ R6 and WSV Ω ∈ R6×6
>0 . The index i denotes the ith participant, meaning

the random effects are assumed on the participant’s level.

• The logit–transformed measurements logit(yi) are assumed to be realizations of Yi
given by

Yi = logit f(xi;Θi) + εi, εi ∼ Nni
(
0, Iniσ

2
)
,

with WSV σ > 0.

• The ODE was solved by a numerical integration. In comparison to using analytical
solutions this results in longer run times and larger inaccuracies in the different es-
timation steps—in particular for the numerical estimation of derivative terms. The
convergence criterion used in the preceding EM applications (e.g. see Section 3.3)
turned out to be too strict and no convergence could be achieved. However, monitor-
ing the EM step revealed that the algorithm works fine. Thus, instead of setting a
strict convergence criterion the algorithm was iterated 15 times. The potential reasons
for the poorer performance of the EM algorithm for this application is discussed later
in Section 6.4.

In the alternative model H1 additional fixed effects ϑ were introduced. These additional
fixed effects are correction factors ∆ for the exchange rates, the Hill coefficient and the half
time for the different distractors conditions:

kv→w(t, cond) = Kbase + δ(t) ·Kv→w ·∆cond
v→w, (6.2)

for (v → w) ∈ {(unrel→ tar), (unrel→ dis), (dis→ tar)},
kv→w(t, cond) = Kbase , (6.3)

for (v → w) ∈ {(tar→ unrel), (dis→ unrel), (tar→ dis)},
h(cond) = θh ·∆cond

h and t1/2(cond) = θt1/2 ·∆
cond
t1/2

, (6.4)

for cond = {cohort, rhyme, none}, h and t1/2 defined in Equation (6.2) and we set the
reference ∆cond

v→w/h/t1/2
= 1 for cond = cohort. Note, for the unrelated condition the second

compartment does not exists and it is K32 = K21 = 0.
Compared to H0, in H1 additional 8 fixed effects parameters were integrated, fixing these

parameters to the value 1 the two models H0 and H1 are identical, thus H0 and H1 are
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nested. The results of both models were compared with respect to the objective function
(approximation of −2 logL).

Based on the LRT, the null hypothesis can be rejected to a significance level of α, if
the (1 − α)–quantile of the χ2–distribution with 8 degrees of freedom is larger than Λ =
−2 logL(y;H0)−2 logL(y;H1). For α = 1% the corresponding χ2 quantile is 26. As shown
in Table 6.2, the additional parameters in H1 lead to a reduction of 991 in the OFV. Thus,
the null hypothesis ’the distractor has no effect’ can be rejected. This finding is in agreement
with the finding by Mirman et al. [2008] ”that both cohort and rhyme competitor fixation
were reliably different from unrelated fixation“.

Table 6.2.: The minimum objective function value and the WSV values of the null and the alternative
model. Λ denotes minus two times the log likelihood ratio of the two models.

H0 H1

OFV 23 876 22 885

Λ 991

σ2 [–] 0.55 0.5

As shown in Table 6.3, incorporating the distractor effects in the analysis effectively
reduces the BSV. According to the expectation, the BSV is reduced in general, except for
h. This disagrees with the intuition. However, the relative difference is only 5% and we
suspect that this is either due to the numerical error resulting from the EM algorithm or
due to correlations within the parameter estimates.

Table 6.3.: Reduction of the BSV: Differences in the BSV between the two models are expressed as
relative change in the CV.

CV% (H0)−CV% (H1)
CV% (H0) [%]

Kbase 29
Kunrel→tar 51
Kunrel→dis 53
Kdis→tar 49
h −5.7
t1/2 26

In the next step we performed the model diagnostics introduced in the first part of this
thesis I for H1. All diagnostic plots reveal a robust data description by the model; due to
the large number of different conditions and compartments it was decided to not included
these plots here. Representatively, the VPC for the target fixation probability for the three
experimental conditions is shown in Figure 6.9. The VPC outlines an adequate agreement
between the simulated and observed quantiles. In particular, the typical trend of each
condition is very well described by the model. However, the range of the 95 % prediction
interval seems to be very large—this might be due to the small sample size of 13 participants
or a hint for a over–prediction of the variability. The VPC for the other compartments look
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comparable. However, the variability seems to be over–predicted. For example, this could
result from an over–prediction of the WSV. As observed in the naive pooling analysis the
magnitudes of the WSV differ between the three conditions; in a next an additional WSV
terms for the different experimental conditions and/or the different compartment could be
implemented.

Finally, we want to interpret the modeling result w.r.t. the initial questions how the
distraction differs between a cohort and a rhyme distractor. The most interesting parameters
are the fixed effects describing the typical probability exchange between the target, distractor
and unrelated item fixation, these fixed effects are displayed in Table 6.4.

Table 6.4.: The fixed effects of model H1. Typical population parameters are presented on the
original scale (e.g. Kbase = elogKbase ).

Cohort Rhyme None

Kunrel→tar [1/s] 0.76 1.7 1.8
Kunrel→dis [1/s] 1.3 0.56 –
Kdis→tar [1/s] 2.7 1.7 –
h [–] 15 3.4 27
t1/2 [s] 0.33 0.47 0.33

Kbase [1/s] 0.036

The parameter estimates of the rate constant Kdis→tar reveal that the cohort distractor
has a weaker attraction as the rhyme distractor. This finding and the estimates of t1/2 are
in agreement with the conclusion by Magnuson et al. [2003] ”the rhyme effects became some-
what diminished, and they showed delayed onset compared with the cohorts“. Moreover, the
estimates of the rate constant Kunrel→tar emphasize the largest increase in target fixation is
reached when no distractor is present.

In the next section we introduce a new modeling approach which is based on the same
structural model but incorporates the stochastic nature of the experimental setting more
appropriate.

6.3.5. The Dirichlet–Multinomial Approach

In this section a new approach which uses the original discrete data instead of the aggregated
data is presented. Aggregating data, and the respective analysis leads to a possible loss of
information in the analysis. E.g. imagine in the underlying study the distractor experiment
was performed twice as often for a cohort as for a rhyme distractor. This fact would be
neglected when using aggregated data, however, the results might differ especially for pa-
rameters which are shared in the model across the distractor conditions, e.g. the rates Kbase
or Kdt in the above model H1. The following example illustrates the impact and thereby
the weakness of analyzing aggregated data.

Assume that the probability of getting head by throwing a coin is π with a between
coin variability Var [π]. An experiment to estimate the expectation and the variance is per-
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formed: N coins are chosen and each coin is thrown ni times, for 1 ≤ i ≤ N . The outcome
is either head or tail, the number of heads are denoted by k1, . . . , kN . Proceeding as above,
the data would first be aggregated to the measurements y = (k1/n1, . . . , kn/nN )T and then
analyzed; e.g. by estimating sample mean and variance. The results would be independent
of the ni’s, meaning the results 1/5 = 0.2 would have the same weight as 90/100 = 0.9
which obviously depicts a strong simplification and loss of information. A more appropriate
approach would also consider the size of each trial.

It is well known that the above experiment corresponds to a binomial distribution—a
special case of the multinomial distribution with only two possible outcomes: head or tail.
If one assumes that π is constant and there is no between coin variability, the distribution
of Yi—the random variable describing the total number of heads in the i-th trial—is given
by Yi ∼ Binomial(ni,π), 1 ≤ i ≤ N . However, if we expect a between coin variability we
have to consider that π itself is a random variable taking values in [0, 1]. Thus, we have
a mixed effects model where pY |π=p is binomial distributed and π correspond to Θi, the
random variable describing the BSV. Based on these assumptions, Yi and (Yi|π = p) are
discrete random variables and π is a continuous random variable. Furthermore, we assume
that (Yi|π = p) and (Yj |π = p) are independent for i 6= j. Thus, the distribution of Yi is
given by the integral

pYi(ki;ni) =

1∫
0

pYi|π=p(ki; p, ni) · pπ(x) dp,

for 1 ≤ ki ≤ ni, with pYi|π=p(ki; p, ni) =
(
ni
ki

)
·pki · (1−p)ni−ki denoting the binomial p.d.f..

There are several possibilities to chose the distribution of π. A frequently used distribution
in this situation is the beta distribution, with π ∼ B(α1, α2) and α1, α2 > 0. The beta
distribution is a continuous distribution with support [0, 1], and expectation and variance
given by

IE [π] =
α1

α0
=: π̄,

Var [π] = π̄ · (1− π̄) · 1

α0 + 1
,

with α0 = α1 + α2, e.g. see Johnson [1995, chap. 25]. A key advantage of using the beta
distribution combined with the binomial distribution is that the beta distribution is the
so–called conjugate prior of the binomial distribution. I.e. compared to the situation in
Section 2 the above integral has an analytical solution and the p.d.f. of Yi is written as

pYi(ki;ni, α1, α2) =
Γ(ni + 1)

Γ(ki + 1) · Γ(ni − ki + 1)

Γ(ki + α1)

Γ(ni − ki + α2) · Γ(ni + α0)

Γ(α0)

Γ(α1) · Γ(α2)

where Γ denotes the gamma function. The distribution of Yi ∼ BB(ni;α1, α2) is called
beta–binomial distribution, and expectation and the variance of Yi are given by

IE [Yi] = ni · π̄,

Var [Yi] =
α0 + ni
α0 + 1

· ni · π̄ · (1− π̄) =
α0 + ni
α0 + 1

·Var [(Yi|π = π̄)] .
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Because ni > 0 and α0 > 0, it is Var [Yi] ≥ Var [(Yi|π = π̄)].
In Table 6.5 the impact of using the aggregated vs. using the binomial or the beta–

binomials model is exemplified. The example shows that the analysis of aggregated data
neglects information, which most likely leads to an over-prediction of the inter–coin variabil-
ity.

Table 6.5.: Illustrative coin example: Comparing the analysis of aggregated and original scale data.
The two columns Betabinomial show different results of the same experiment; aggregating the discrete
data leads to identical relative frequencies, also the total number of experiments

∑
ni is identical.

In the first Betabinomial case, the largest trial n2 = 120 shows the highest probability of getting
head, while in second Betabinomial case the largest trial n1 = 125 shows a much lower probability of
getting head. In the Betabinomial models those differences in the trial size are considered while in
the aggregated analysis each trial is weighted equally. The example illustrates the impact: in the first
Betabinomial case the probability of getting head is 50% higher as in the second case. The inter–coin
variability is more than doubled in the aggregated analysis.

Aggregated Betabinomial

ki/ni (ki, ni) (ki, ni)

y1 0.2 (1, 5) (25, 125)
y2 0.6 (72, 120) (6, 10)
y3 0.5 (24, 48) (4, 8)
y4 0.25 (1, 4) (6, 24)
y5 0.2 (3, 15) (5, 25)∑
ni – 207 207∑
ki – 102 57∑
ki/

∑
ni – 0.53 0.24

IE [π] 0.35 0.42 0.28
Var [π] 0.04 0.017 0.0059

Going back to our study we have a similar situation. If no distractor is present the par-
ticipant can fixate either the target or the unrelated items, this corresponds to head or tail.
Under the rhyme or cohort distractor condition the participant can fixate either the target,
the distractor or an unrelated item, thus one has three possible choices. The corresponding
discrete distribution is given by the multinomial distribution. In this case the analog of the
beta distribution is the so–called Dirichlet distribution. The Dirichlet distributions is the
conjugate prior of the multinomial distribution. The multinomial distribution is a general-
ization of the binomial model, the Dirichlet distribution of the beta distribution and thus the
beta–binomial distribution is a special case of the Dirichlet–multinomial DM distributions
for K = 2. The introduced properties for the beta–binomial model apply as well to the
Dirichlet–multinomial model.

The idea of our approach is now to use the original discrete data combined with the
Dirichlet–multinomial model in the context of the NLME modeling approach. The WSV
model (Yi|Θi = θi) of a NLME model—in the classical NLME situation given by a normal
distribution—is replaced by the Dirichlet–Multinomial distribution (DirMult) distribution.
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The underlying probability time course of p(t) is described by the competition model devel-
oped in Section 6.3.1. Because we introduced the EM only for the situation that the WSV
is described by a normal distribution, the E– and M–step have to be adapted to the new
WSV model.

Adapting the EM-Algorithm

We briefly describe how the EM algorithm was adapted to be applicable in combination with
a discrete WSV distribution.

In summary the parameter β comprises the fixed effects parameters θ, the associated
BSV Ω and fixed effects not associated with a random effect ϑ. In the Dirichlet–multinomial
model the Dirichlet parameter α0 corresponds to the variance parameter σ2 in the normal
distribution model. In comparison to the usual M–step, the adapted update step of the
WSV parameter α0 cannot be derived in an analytically closed form. Thus, α0 is considered
as a fixed effect ϑ in the NLME context. The EM algorithm is performed analogously as
introduced in Section 3.1, except for the following deviations:

• E-step: Analogously to the E–step presented in Section 3.1, we assume Zi = (Θi|Yi =
yi) with

Zi
approx.∼ Np

(
θ̂i(yi;β), CZ

LA
i

)
,

with θ̂i(yi;β) = arg max g(θi) and CZ
LA
i =

(
−∇2g(θ̂i(yi;β))

)−1
,

with g(θi) = log pYi|Θi=θi(yi; θi, ϑ) + log pΘi(θi;β) and pYi|Θi=θi denotes the p.d.f. of
the Dirichlet–multinomial distribution, and pΘi the p.d.f. of the multivariate normal
distribution.

• M-step:

(1) Update θ and Ω as introduced in Section 3.1.

(2) Update ϑ (including the Dirichlet parameter α0 > 0):

ϑ̂ = arg max
ϑ

N∑
i=1

log pYi|Θi=θi(yi; θ̂i(yi;β), ϑ),

using numerical optimization methods.

In the next section the DirMult adjusted EM algorithm is used to analysis the underlying
discrete data in a NLME context. The results are compared with the associated results of
the classical analysis of the aggregated data.

Results of the Mixed Effects Dirichlet–Multinomial Model

For the Dirichlet–multinomial approach we use an alternative random effects structure of
a mixed effects model to address the main objective of the underlying study, namely the
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quantification of the distractor effect. This alternative structure should illustrate how the
same objective is addressed with different approaches using mixed effects modeling.

In the following, we assumed random effects for the experimental condition, but not for
each participant; i.e. the individual participant effect is ignored here. The model we used is
composed of the following parts:

• Structural model f(xi, θi) given by the competition model with parameterization
kunrel→tar, kunrel→dis and kdis→tar and the time delay kx→y(t) = Kbase + Kx→y · δ(t).
The remaining rates were set to the baseline ktar→unrel = ktar→dis = kdis→unrel = Kbase .

• The random effects are logK31, logK21 and logK23 and the stochastic model is given
by

Θi ∼ N3 (θ,Ω) ,

with θ ∈ R3 and WSV Ω ∈ R3×3
>0 . The baseline rate Kbase , the Hill coefficient h and

the half time t1/2 were assumed to be condition independent and were thereby modeled
as fixed effects not associated with a random effect.

• The WSV model is given by the Dirichlet–multinomial model

(Yi|Θi = θi) ∼ DM(ni;αi)

with αi = (αi tar, αi dis, αi unrel)
T , where αiv = α0 · pv(t; θi), v ∈ {tar,dis, unrel},

α0 > 0 and 1 ≤ i ≤ 3 denoting the experimental condition cohort, rhyme or none
distractor and Dirichlet parameter. For a specific time point tj the vector Yij =
(Yij,1, . . . ,Yij,13)T describes the result of repeating the experiment 13 times (number
of participants) for the condition i.

• Due to the same reasons as stated in Section 6.3.4 we iterated the algorithm 15 times
instead of setting a convergence criterion.

The results of the analysis are presented in Table 6.6. The conclusion based on the
estimated parameter values is in line with the analysis of the aggregated data. The large
value of α0 indicates that Var [Yi] is similar to the variability of the respective multinomial
model without incorporating the Dirichlet level. The VPC in Figure 6.10 shows that the
variability of the data varies over time; in the first phase (below one second) the model under–
predicts this variability while in the latter phase the model over–predicts the variability.
Unfortunately, the introduced Dirichlet–multinomial approach is not able to describe such
time dependency of the variability appropriately. However, the median profiles are in good
agreement. For illustration, in Figure 6.11 the observed and predicted (i.e. density) frequency
of target fixation is presented for three arbitrary chosen time points. The plot emphasize the
results obtained in the VPC, the medium profile is adequately described, while the variability
in the early time point t1 is under–predicted, in the time point t2 slightly under–predicted
and for the later time point t3 the variability matches very well. Overall the variability in
the data is more appropriately represented by the multinomial–Dirichlet NLME model as
using a classical NLME approach on the aggregated data.
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In the last step, we compared the results of the new approach with the analysis of the
aggregated data using the classical NLME analysis with the same random effects structure
as introduced above for the Dirichlet–multinomial approach. The parameter estimates of
the classical analysis are presented in brackets in Table 6.6. The results of both approaches
are very similar, emphasizing that the Dirichlet–multinomial model could successfully be
applied and combined with the EM algorithm.

Table 6.6.: Results of the NLME approach using DirMult model and the classical approach (in
brackets). The transformed estimated are displayed, e.g. kbase = elog kbase . The rates were assumed
to vary between the conditions (i.e. random effects); here the EBEs for each condition are presented.

Cohort Rhyme None

EBEs

Kunrel→tar [1/s] 1.0 (1.1) 1.7 (2.0) 2.3 (2.4)
Kunrel→dis [1/s] 1.7 (1.8) 0.59 (0.5) –
Kdis→tar [1/s] 3.3 (3.8) 2.0 (2.0) –

Fixed effects

Kbase [1/s] 0.14 (0.08)
h [–] 2.9 (3.5)
t1/2 [s] 0.54 (0.54)

α0 [–] 390 (–)

6.4. Discussion and Conclusion

In this chapter we successfully applied the NLME methodology using the deterministic
EM algorithm for data from a psycholinguistic experiment. We developed new aspects
to take into account prior knowledge about the postulated cognitive mechanisms and the
measurement of eye movements:

(i) Introduced a structural model which takes into account the competition for attraction
between the target, the distractor and the unrelated item.

(ii) Introduced a new discrete WSV model which describes the underlying stochastic of
the experiment more appropriately as using the aggregated data.

Based on the competition model, the model parameters can be interpreted more appro-
priately compared to the polynomial approach by Mirman et al. [2008]. Moreover, compared
to the polynomial approach the competition model is able to describe the measurements over
the full sampling period and to extrapolate beyond the measurement period. Using the com-
petition model combined with the classical NLME analysis on the aggregated data as well as
the Dirichlet–multinomial mixed effects model provided an adequate description of the data.

The analysis of the aggregated data was performed assuming a random effect on the
participant’s level. The integration of fixed effects to account for differences between the
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experimental conditions led to a significant improvement of the model. For the Dirichlet–
multinomial analysis we assumed that differences between participants can be neglected, and
each participant only represents another repetition of the experiment. Here, the random ef-
fects were used to account for differences between the experimental conditions. This setting
was chosen to demonstrate how the same questioning can be addressed with an alternative
version of the mixed effects structure. Among others, leaving out the participant level re-
sults in absence of the auto–correlation phenomenon. Of course, if the differences between
individuals are of interest the same mixed effects structure as assumed in Section 6.3.4 could
be used in combination with the Dirichlet–multinomial distribution.

Howsoever, analysing the aggregated data with the ’classical’ approach or the original
data using the Dirichlet–multinomial approach successfully quantified the impact of the
distractor item under the different experimental conditions with cohort, rhyme or none dis-
tractor present. The estimated parameter values of both approaches were in the same order
of magnitude and provided similar conclusion for the study. This indicates that the adapted
EM algorithm was successfully implemented for the Dirichlet–multinomial model. However,
both, the classical and the Dirichlet–Multinomial approach were not able to adequately de-
scribe the time–changing variability.

As mentioned earlier, for the underlying data and the competition model the EM algo-
rithm did not converge according to the convergence criterion we used in Section 5. We
believe this is due to the accuracy of the numerical integration we used to solve the ODE
system; in particular, this results in inferior accuracy of gradient and Hessian estimations
which are important for the EM algorithm. Further investigation could show whether forc-
ing a higher accuracy of the numerical ODE solver would solve this issue.

The idea to use discrete distribution in a mixed effects context is already widely applied
for linear models. In this case, these discrete NLME models are called generalized NLME
models, see Vonesh and Chinchilli [1997, chap. 8]. To the best of our knowledge, a non–linear
mixed effects Dirichlet–multinomial model and the algorithm to derive the ML estimate have
not been described yet. The successful implementation of the new methodology shows that
different types of stochastic distribution can be combined with the EM algorithm and only
small adaptions have to be conducted. Another new aspect which was introduced, is the
use of a conjugate prior in combination with mixed effects modeling. The additional con-
jugate prior distribution—in our example the Dirichlet distribution—offers more flexibility
to modify the shape of the discrete WSV distribution. In the underlying analysis we also
tested the multinomial distribution without the Dirichlet prior, however, we observed that
the estimation process was much more stable including the Dirichlet distribution which was
an additional important argument to used the Dirichlet–multinomial model.

The possibilities for such a discrete mixed effects modeling approach are various: all re-
peated measurement experiments where the measurements are discrete or categorical and
different subjects or conditions are involved. For example, in many clinical trials categorical
scores are used to categorize the disease status and to observe whether this improves under
treatment.
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In a next step a simulation & estimation study should be conducted to investigate ad-
vantages and disadvantages of analyzing discrete data with a discrete WSV distribution vs.
analyzing aggregated data with a continuous WSV distribution. Intuitively, especially in
situations where number of experiments differs markedly, as illustrated in the coin–tossing
example, the analysis based on a discrete WSV distribution should deliver more appropriate
results as the analysis based on a continuous WSV distribution. Finally, we have to mention
that the performance of the algorithm as well as the impact of the auto–correlated error
has not been investigated systemically and appropriately for the underlying application.
Thus, an important next step would be to follow up on this by conducting a simulation &
estimation study.
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Figure 6.9.: VPCs of the model H1, only showing the results for the probability of the target ptar
for the three experimental conditions: cohort, rhyme and none distractor. The blue dotted lines
indicate the boundaries of the prediction interval of the 10th and 90th quantiles, which overlap with
the prediction interval of the median. The solid lines depict the 10th and 90th quantiles and the
median of the measurements.
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Figure 6.10.: VPC of the Dirichlet-Multinomial model for the ’none’ distractor condition a only for
the target probability ptar. The ’none’ distractor condition was chosen because for this condition only
two compartments are present and the Dirichlet–multinomial Model is similar to the beta–binomial
model, the margins of this distribution are easier to illustrate. The 10th, 50th and 90th quantiles
are shown. The gray lines indicate the quantiles of the measurements, the shaded area of the model
simulations. For three arbitrary chosen time points t1, t2 and t3 cross–sections are created to illustrate
the margins of the beta–binomial model on the original scale in Figure 6.11.
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Figure 6.11.: Cross–sections from Figure 6.10 at three different time points. Histograms repre-
sent the frequency of the measurements, vertical gray lines the 10th, 50th and 90th quantiles of the
measurements, the shaded areas the 95th prediction intervals of the simulated quantiles.
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7. Conclusions

Finally, we want to briefly summarize each chapter including the main achievements of this
thesis. In Part I we systematically derived and illustrated the Laplacian, FO and FOCE
method to approximate the likelihood function of a (multivariate) NLME model. Therein,
we presented a common interpretation of each approximation method which was used to
outline the respective similarities and dissimilarities. Following the new interpretation, we
described a deterministic EM algorithm based on the FOCE approximation to determine
ML estimates of a NLME model.

In Part II, Chapter 5 we presented a new approach how mechanistic PBPK modeling can
be integrated in the NLME framework to analyze population plasma PK data of the an-
tibiotic levofloxacin using the deterministic EM algorithm. The resulting population PBPK
model was used to predict ISF concentrations of levofloxacin which are the drug target—
the site of infection. A comparison between the in silico predictions and in vivo micro-
dialysis measurements in muscle and adipose tissue showed an adequate agreement. This
indicates that the presented integrated approach—using plasma PK data and mechanism–
driven NLME modeling to inform and optimize the PBPK model—led to an adequate a
priori characterization of the tissue PKs of levofloxacin in humans.

The presented approach demonstrates how mechanistic PBPK models, which are usually
developed in the early stage of drug development, can be used as basis for model building in
the analysis of later stages, i.e. in clinical studies. As a consequence, the extensively collected
and accumulated knowledge about species and drug are utilized and updated with specific
volunteer or patient data. The NLME approach combined with mechanistic modeling re-
veals new insights for the mechanistic model, for example identification and quantification
of variability in mechanistic processes. This represents a further contribution to the learn &
confirm paradigm across different stages of drug development.

In Part II, Chapter 6 we introduced a new approach to analysis eye movement time–
courses combining NLME and mechanistic modeling. Therein, the structural as well as the
WSV model were mechanistically motivated reflecting the underlying experimental setting.
The structural model takes into account the competition of the eyes’ attraction by the dif-
ferent visual items, while the discrete Dirichlet–multinomial distribution was used as WSV
model to account for the discrete nature of the measurements of the experiment. As a con-
sequence, a simultaneous analysis of the entire data obtained from all experiments could be
performed. Additionally, the mechanistic competition model reflects the underlying recog-
nition process, facilitating an plausible interpretation of the experiment.

In summary, we successfully presented how NLME modeling and mechanistic modeling
can be integrated to analyze repeated measurement data to a mechanism–driven model
development based on two real world applications.
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8. Derivation of Louis’ Formula

In the context of the EM algorithm a useful representation for an estimate of the observed
Fisher information matrix ÎY (β) = −∇2

β log pY (Y ;β) is given by the Louis’ formula, see
Louis [1982],

ÎY (β) = IEβ
[
−∇2

β log pY ,Θ(y,Z;β)
]

−Varβ
[
∇β log pY ,Θ(y,Z;β)

]
.

To avoid confusion due to different notation used by Louis [1982] and used by us, we con-
sidered it to be useful to include a brief derivation of the above formula. To this end, in a
first step the first and second derivatives of log pY have to be derived

∇β log pY (y;β) =
∇β pY (y;β)

pY (y;β)
,

∇2
β log pY (y;β) =

∇2
β p

Y (y;β)

pY (y;β)
+

(
∇β

1

pY (y;β)

)(
∇β pY (y;β)

)T
=
∇2
β p

Y (y;β)

pY (y;β)
+

(
− 1

(pY (y;β))2
∇β pY (y;β)

)(
∇β pY (y;β)

)T
=
∇2
β p

Y (y;β)

pY (y;β)
−
(

1

pY (y;β)
∇β pY (y;β)

)(
1

pY (y;β)
∇β pY (y;β)

)T
=
∇2
β p

Y (y;β)

pY (y;β)
−
(
∇β log pY (y;β)

) (
∇β log pY (y;β)

)T
. (8.1)

Using the same steps as above, log pY ,Θ can be written as

∇2
β log pY ,Θ(y,θ;β) =

∇2
β p

Y ,Θ(y,θ;β)

pY ,Θ(y,θ;β)
−
(
∇β log pY ,Θ(y,θ;β)

) (
∇β log pY ,Θ(y,θ;β)

)T
.

(8.2)
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Furthermore, under sufficient regularity conditions, we have

∇2
β p

Y (y;β)

pY (y;β)
=

1

pY (y;β)
∇2
β

∫
pY ,Θ(y, θ;β) dθ

=

∫ ∇2
β p

Y ,Θ(y, θ;β)

pY ,Θ(y, θ;β)

pY ,Θ(y, θ;β)

pY (y;β)︸ ︷︷ ︸
=pΘ|Y =y

dθ

= IEβ

[
∇2
β p

Y ,Θ(y,Z;β)

pY ,Θ(y,Z;β)

]
= IEβ

[
∇2
β log pY ,Θ(y,Z;β)

]
+ IEβ

[(
∇β log pY ,Θ(y,Z;β)

) (
∇β log pY ,Θ(y,Z;β)

)T ]
, (8.3)

where Z := (Θ|Y = y) and in the last step Equation (8.2) was used. An analogous
calculation leads to

∇β log pY (y;β) = IEβ
[
∇β log pY ,Θ(y,Z;β)

]
.

Thus, the second term in Equation (8.1) can be written as(
∇β log pY (y;β)

) (
∇β log pY (y;β)

)T
=

IEβ
[
∇β log pY ,Θ(y,Z;β)

] (
IEβ
[
∇β log pY ,Θ(y,Z;β)

])T
.
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9. The Naive Pooling Approach

The naive pooling approach is a very simple approach, which can be used to estimate the
average population parameters based on the observations y1, . . . ,yN , see Sheiner [1984].
The idea is to use the observations of all subjects pooled together and to estimate average
population parameters only. Therefore, it is assumed that y1, . . . ,yN are realizations of the
random sample Y = (Y1, . . . ,YN )T with

Y = (Y1, . . . ,YN )T = (f(x1; θNP), . . . , f(xN ; θNP))T + ε, (9.1)

with θNP ∈ Rp, ε ∼ NNn
(
0, INnσ

2
NP

)
, Nn =

∑N
i ni, INn = diag (1, . . . , 1) ∈ RNn×Nn and

σ2 > 0. This approach is useful, if the observations of the individuals are not informative
enough to estimate reliable individual parameter values.

The ML estimator of θNP and σ2
NP are given by

θ̂NP(Y ) = arg min
θ∈Rp

N∑
i=1

ni∑
j=1

(Yij − f(xij ; θ))
2 ,

σ̂2
NP(Y ; θ) =

1

Nn

N∑
i=1

ni∑
j=1

(Yij − f(xij ; θ))
2 . (9.2)

The inverse of the variance–covariance of the ML estimators can be approximated by the
observed Fisher information, e.g. see Lehmann and Romano [2005, sec. 12.4.1] and Boos
and Stefanski [2013, p. 66],

IY (θ;σ2) = −∇2
θ log pY (Y ; θ, σ2)

=
1

σ2

N∑
i=1

ni∑
j=1

∇θf(xij ; θ)∇θf(xij ; θ)
T

− 1

σ2

N∑
i=1

ni∑
j=1

(Yij − f(xij ; θ))∇2
θf(xij ; θ)

IY (σ2; θ) = − Nn

2(σ2)2
+

1

(σ2)3

N∑
i=1

ni∑
j=1

(Yij − f(xij ; θ))
2

=
Nn

2(σ2)2
, (9.3)

Given a realization y of Y , an estimate ÎY of the observed Fisher is given by evaluating
Equation (9.3) at the ML estimates θ̂NP(y) and σ̂2

TS(y, θ̂NP(y)) and by replacing the random
variable Y by the observation y.
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10. The Two–Stage Approach

The two–stage approach is a simple approach to analyse repeated measurement studies. As
the name already hints, the analysis is performed in two steps: first the individual parameter
estimates are derived for each subject, and second, the individual estimates are described
with some summary statistics. The principle of the two stage approach is among others
described in Sheiner [1984], while details and the attention to detail might vary between
authors.

10.1. First Stage: Determine Individual Parameter Estimates

Given the random sample Y1, . . . ,YN and under the assumption that

Yi = f(xi; θi) + εi, εi ∼ Nni(0, Iniσ2
i ),

for 1 ≤ i ≤ N , with Ini = diag (1, . . . , 1) ∈ Rni×ni , σ2
i > 0 and θi ∈ Rp, the likelihood

function for θi and σ2
i is given by

Li : Rp × R>0 → [0, 1], Li(θi, σ
2
i ) = pYi(Yi; θi, σ

2
i ).

The ML estimator of θi is given by

θ̂i(Yi) = arg max
θi∈Rp

Li(θi, σ
2
i ;Yi)

= arg min
θi∈Rp

− 2 logLi(θi, σ
2
i ;Yi)

= arg min
θi∈Rp

ni∑
j=1

(Yij − f(xij ; θi))
2 . (10.1)

Thus, the ML estimator of θi does not depend on the parameter σ2
i . Given a realization

yi of Yi, the determination of the respective ML estimate θ̂i(yi) corresponds to a classi-
cal nonlinear regression problem, e.g. see Deuflhard and Hohmann [2003, chap. 4], Bonate
[2011, chap. 3]. Because f is nonlinear, the least squares minimization in Equation (10.1)
can not be solved analytically and numerical minimization methods have to be applied, e.g.
Gauss–Newton–type algorithms (e.g. see Deuflhard and Hohmann [2003, chap. 4.3], Bonate
[2011, chap. 3]).

The ML estimator for σ2
i is given by

σ̂2
i (Yi; θi) =

1

ni

ni∑
j=1

(Yij − f(xij ; θi))
2 . (10.2)
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10. The Two–Stage Approach

The inverse of the variance–covariance of the ML estimators for θi and σ2
i can be approxi-

mated by the observed Fisher information, e.g. see Lehmann and Romano [2005, sec. 12.4.1]
and Boos and Stefanski [2013, p. 66],

IYi
(θi;σ

2
i ) =

1

σ2
i

ni∑
j=1

∇θif(xij ; θi)∇θif(xij ; θi)
T ,

− 1

σ2
i

ni∑
j=1

(Yij − f(xij ; θi))∇2
θi
f(xij ; θi)

IYi
(σ2
i ; θi) = − ni

2(σ2
i )

2
+

1

(σ2
i )

3

ni∑
j=1

(Yij − f(xij ; θi))
2

=
ni

2(σ2
i )

2
.

Besides, due to the properties of a ML estimator, for ni → ∞ we have θ̂i(Yi) → θi and
σ̂2
i (Yi)→ σ2

i , and in limit expected and observed Fisher information are equivalent, Wake-
field [2013, p. 39]. Because IE [Yij ]−f(xij ; θi) = 0, for determining the expected Fisher infor-
mation IYij

(θi) the—as the case may be—challenging estimation of the hessian ∇2
θi
f(xij ; θi)

is avoided.

In summary, in this section, the ML estimator for the individual parameters θ̂i(Yi), the
within subject variability σ̂2

i (Yi; θi) and the associated variance–covariance in terms of the
observed Fisher information have been presented. Based on these results, the second step
of the two stage approach is presented in the next section.

10.2. Second Stage

10.2.1. Within Subject Variability

The WSV quantifies the average magnitude of deviation between individual predictions and
measurements. In general, it is assumed, that average deviation should be independent of
the underlying subject. Thus, in a population context it is assumed that the WSV σ2

i are
identical for all subjects

σ2
1 = . . . = σ2

N = σ2.

For the additive error model this results in

Yi ∼ Nni
(
f(xi; θi), Iniσ

2
)
, (10.3)

for all 1 ≤ i ≤ N .
Consequently, the likelihood introduced in the first stage is modified to

LN : Rp × . . .× Rp × R>0 → [0, 1], (θ1, . . . , θN , σ
2)→

N∏
i=1

pYi(Yi; θi, σ
2). (10.4)
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10.2. Second Stage

The estimation of θi is independent of θj , j 6= i and σ2. Hence, under the model (10.3) the
ML estimator of θi is given by θ̂i(Yi) (see Equation (10.1)).

The ML estimator of σ2 is given by

σ̂2
TS(Y ; θ1, . . . , θN ) =

1

Nn

N∑
i=1

ni∑
j=1

(Yij − f(xij , θi))
2, (10.5)

with Nn =
∑N

i=1 ni. If the number of observations is balanced within the population, i.e.
n1 = . . . = nN , it follows that σ̂2

TS(Y ; θ1, . . . , θN ) = 1/N
∑N

i=1 σ̂
2
i (Yi; θi), where σ̂

2
i (Yi; θi)

are the results derived in the first stage.
Analogously to Section 10.1, the variance of σ̂2 can be approximated by the inverse of

the observed Fisher information

Var−1
[
σ̂2

TS(Y ; θ1, . . . , θN )
]
≈ Nn

2(σ̂2
TS(Y ; θ1, . . . , θN ))2

. (10.6)

10.2.2. Between Subject Variability

In the two–stage approach the distribution FΘ characterizing the BSV is usually not speci-
fied explicitly but only descried using common statistical measures, like median, mean and
standard deviation of the individual parameter, e.g. see FDA [1999, p. 4].

Sample mean and sample variance-covariance of θ̂1(Y1), . . . , θ̂N (YN ) are given by

θ̂TS :=
1

N

N∑
i=1

θ̂i(Yi),

Ω̂TS :=
1

N

N∑
i=1

(θ̂i(Yi)− θ̂TS)(θ̂i(Yi)− θ̂TS)T . (10.7)

Analogously to the WSV, the magnitude of BSV is often presented as CV (see Equa-
tion (1.4))

CV% ((Θi)k) =

√
(Ω̂TS)kk(
θ̂TS

)
k

, (10.8)

for 1 ≤ k ≤ p, where (Θi)k denote the k-th entry of Θi, (θ̂TS)k and (Ω̂TS)kk represent an
estimate of the expectation and variance of (Θi)k, respectively.

In summary, in the first step the individual parameters are determined. Based on these,
in a second step, the WSV σ̂2

TS , the sample mean θ̂TS representing the population average
and the sample variance–covariance Ω̂TS quantifying the BSV are determined. It is worth
mentioning, that in the two–stage approach as described above each individual estimate is
weighted identically.
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