92-XX BIOLOGY AND OTHER NATURAL SCIENCES
Refine
Year of publication
Document Type
- Doctoral Thesis (41)
- Bachelor Thesis (1)
- Conference Proceeding (1)
- Habilitation Thesis (1)
Is part of the Bibliography
- yes (44)
Keywords
- Klimawandel (3)
- climate change (3)
- Adipositas (2)
- Biodiversität (2)
- Metabolomics (2)
- Photosynthese (2)
- Siberia (2)
- ecology (2)
- metabolomics (2)
- Ökologie (2)
Institute
- Institut für Biochemie und Biologie (20)
- Institut für Chemie (7)
- Institut für Ernährungswissenschaft (5)
- Institut für Geowissenschaften (5)
- Extern (3)
- Institut für Physik und Astronomie (3)
- Institut für Mathematik (2)
- Institut für Umweltwissenschaften und Geographie (1)
- Strukturbereich Kognitionswissenschaften (1)
Establishment of final leaf size in plants represents a complex mechanism that relies on the precise regulation of two interconnected cellular processes, cell division and cell expansion. In previous work, the barley protein BROAD LEAF1 (BLF1) was identified as a novel negative regulator of cell proliferation, that mainly limits leaf growth in the width direction. Here I identified a novel RING/U-box protein that interacts with BLF1 through a yeast two hybrid screen. Using BiFC, Co-IP and FRET I confirmed the interaction of the two proteins in planta. Enrichment of the BLF1-mEGFP fusion protein and the increase of the FRET signal upon MG132 treatment of tobacco plants, together with an in vivo ubiquitylation assay in bacteria, confirmed that the RING/U-box E3 interacts with BLF1 to mediate its ubiquitylation and degradation by the 26S proteasome system. Consistent with regulation of endogenous BLF1 in barley by proteasomal degradation, inhibition of the proteasome by bortezomib treatment on BLF1-vYFP transgenic barley plants also resulted in an enrichment of the BLF1 protein. I thus demonstrated that RING/U-box E3 is colocalized with BLF1 in nuclei and negatively regulates BLF1 protein levels. Analysis of ring-e3_1 knock-out mutants suggested the involvement of the RING/U-box E3 gene in leaf growth control, although the effect was mainly on leaf length. Together, my results suggest that proteasomal degradation, possibly mediated by RING/U-box E3, contributes to fine-tuning BLF1 protein-level in barley.
Climate change of anthropogenic origin is affecting Earth’s biodiversity and therefore ecosystems and their services. High latitude ecosystems are even more impacted than the rest of Northern Hemisphere because of the amplified polar warming. Still, it is challenging to predict the dynamics of high latitude ecosystems because of complex interaction between abiotic and biotic components. As the past is the key to the future, the interpretation of past ecological changes to better understand ongoing processes is possible. In the Quaternary, the Pleistocene experienced several glacial and interglacial stages that affected past ecosystems. During the last Glacial, the Pleistocene steppe-tundra was covering most of unglaciated northern hemisphere and disappeared in parallel to the megafauna’s extinction at the transition to the Holocene (~11,700 years ago). The origin of the steppe-tundra decline is not well understood and knowledge on the mechanisms, which caused shifts in past communities and ecosystems, is of high priority as they are likely comparable to those affecting modern ecosystems. Lake or permafrost core sediments can be retrieved to investigate past biodiversity at transitions between glacial and interglacial stages. Siberia and Beringia were the origin of dispersal of the steppe-tundra, which make investigation this area of high priority. Until recently, macrofossils and pollen were the most common approaches. They are designed to reconstruct past composition changes but have limit and biases. Since the end of the 20th century, sedimentary ancient DNA (sedaDNA) can also be investigated. My main objectives were, by using sedaDNA approaches to provide scientific evidence of compositional and diversity changes in the Northern Hemisphere ecosystems at the transition between Quaternary glacial and interglacial stages.
In this thesis, I provide snapshots of entire ancient ecosystems and describe compositional changes between Quaternary glacial and interglacial stages, and confirm the vegetation composition and the spatial and temporal boundaries of the Pleistocene steppe-tundra. I identify a general loss of plant diversity with extinction events happening in parallel of megafauna’ extinction. I demonstrate how loss of biotic resilience led to the collapse of a previously well-established system and discuss my results in regards to the ongoing climate change. With further work to constrain biases and limits, sedaDNA can be used in parallel or even replace the more established macrofossils and pollen approaches as my results support the robustness and potential of sedaDNA to answer new palaeoecological questions such as plant diversity changes, loss and provide snapshots of entire ancient biota.
Childhood compared to adolescence and adulthood is characterized by high neuroplasticity represented by accelerated cognitive maturation and rapid cognitive developmental trajectories. Natural growth, biological maturation and permanent interaction with the physical and social environment fosters motor and cognitive development in children. Of note, the promotion of physical activity, physical fitness, and motor skill learning at an early age is mandatory first, as these aspects are essential for a healthy development and an efficient functioning in everyday life across the life span and second, physical activity behaviors and lifestyle habits tend to track from childhood into adulthood.
The main objective of the present thesis was to optimize and deepen the knowledge of motor and cognitive performance in young children and to develop an effective and age-appropriate exercise program feasible for the implementation in kindergarten and preschool settings. A systematic review with meta-analysis was conducted to examine the effectiveness of fundamental movement skill and exercise interventions in healthy preschool-aged children. Further, the relation between measures of physical fitness (i.e., static balance, muscle strength, power, and coordination) and attention as one domain of cognitive performance in preschool-aged children was analyzed. Subsequently, effects of a strength-dominated kindergarten-based exercise program on physical fitness components (i.e., static balance, muscle strength, power, and coordination) and cognitive performance (i.e., attention) compared to a usual kindergarten curriculum was examined.
The systematic review included trials focusing on healthy young children in kindergarten or preschool settings that applied fundamental movement skill-enhancing intervention programs of at least 4 weeks and further reported standardized motor skill outcome measures for the intervention and the control group. Children aged 4-6 years from three kindergartens participated in the cross-sectional and the longitudinal study. Product-orientated measures were conducted for the assessment of muscle strength (i.e., handgrip strength), muscle power (i.e., standing long jump), balance (i.e., timed single-leg stand), coordination (hopping on right/left leg), and attentional span (i.e., “Konzentrations-Handlungsverfahren für Vorschulkinder” [concentration-action procedure for preschoolers]).
With regards to the scientific literature, exercise and fundamental movement skill interventions are an effective method to promote overall proficiency in motor skills (i.e., object control and locomotor skills) in preschool children particularly when conducted by external experts with a duration of 4 weeks to 5 months. Moreover, significant medium associations were found between the composite score of physical fitness and attention as well as between coordination separately and attention in children aged 4-6 years. A 10-weeks strength-dominated exercise program implemented in kindergarten and preschool settings by educated and trained kindergarten teachers revealed significant improvements for the standing long jump test and the Konzentrations-Handlungsverfahren of intervention children compared to children of the control group.
The findings of the present thesis imply that fundamental movement skill and exercise interventions improve motor skills (i.e., locomotor and object control skills). Nonetheless, more high-quality research is needed. Additionally, physical fitness, particularly high performance in complex fitness components (i.e., coordination measured with the hopping on one leg test), tend to predict attention in preschool age. Furthermore, an exercise program including strength-dominated exercises, fundamental movement skills and elements of gymnastics has a beneficial effect on jumping performance with a concomitant trend toward improvements in attentional capacity in healthy preschool children. Finally, it is recommended to start early with the integration of muscular fitness (i.e., muscle strength, muscle power, muscular endurance) next to coordination, agility, balance, and fundamental movement skill exercises into regular physical activity curriculums in kindergarten settings.
In nature, plants often encounter biotic and abiotic stresses, which can cause reduced crop yield and quality, and threaten the nutrition of a growing human population. As heat stress (HS) is one of the main abiotic stresses, and is projected to increase due to global warming, it is necessary to better understand how plants respond and survive under HS. In Arabidopsis thaliana, plants can survive under severe HS if primed by a non-lethal HS, a process called acquisition of thermotolerance. This primed stated can be maintained for several days, and the ability of plants to maintain the primed state is called maintenance of acquired thermotolerance (mATT) or HS memory. According to current research, two Heat shock factors (HSFs) HSFA2 and HSFA3 are known to account for the majority of mATT capability, and there are other HSFs e.g. HSFA1b and HSFA6b in HSF complexes containing HSFA2 and/or HSFA3, however, the roles of these HSFs in HS memory is not clearly understood. Moreover, the mechanism of these HSFs in regulating HS memory is unclear, whether transcriptional machinery e.g. the Mediator complex contributes to transcriptional memory. This work investigates the role of HSFs and Mediator subunits in HS memory in A. thaliana. For the role of HSFs, the interaction between HSFA1b and HSFA2 during HS memory phase was confirmed by in vivo co- immunoprecipitation (Co-IP). HSFA1b, HSFA2, HSFA3 and HSFA6b targeted HS memory-related genes according to DNA affinity purification sequencing (DAP-seq) data, and targets of HSFA1b were confirmed in vivo by chromatin immunoprecipitation qPCR (ChIP-qPCR). The mutant of hsfa6b showed an HS memory deficiency phenotype in mATT survival assay. These data confirmed the role for HSFA2 and HSFA3 in HS memory, and suggest that HSFA1b and HSFA6b also function in HS memory. The Mediator complex functions as an RNA Polymerase II (RNA Pol II) co-regulator, and includes Head, Middle, Tail and Kinase modules. Both MED23 and MED32 belong to the Tail module, and they have a positive role in HS memory. MED23 interacted with HSFA3, as determined by yeast two hybrid (Y2H) and in vivo Co-IP assays. The med23 mutant showed a decreased HS memory phenotype, reduced expression of Type I (sustained expression) memory genes following HS, and reduced accumulation of the memory-associated Tri-methylation of histone H3 lysine 4 (H3K4me3)histone modification at HS memory-related gene loci after HS. MED23 was recruited to HS-inducible memory and non-memory genes after HS, as determined by ChIP-qPCR. The med32
mutant showed a reduced HS memory phenotype, decreased expression of Type I and Type II (hyper-induction) memory genes, and lower accumulation of H3K4me3 at memory gene lociafter HS. However, MED32 did not show interaction with any tested HSF in Y2H or in vivo Co-IP. MED32 regulated the recruitment of RNA Pol II at HS-inducible genes after HS, but was not itself recruited to HS memory genes after HS. These results provided more evidence
that the Mediator subunits MED23 and MED32 regulate HS memory on transcriptional and epigenetic levels. In general, this work provides a better insight into the molecular mechanism of how HSFs and Mediator subunits regulate HS memory in plants and will provide new perspectives to breed crops with improved thermotolerance.
Increasing demand for food, healthcare, and transportation arising from the growing world population is accompanied by and driving global warming challenges due to the rise of the atmospheric CO2 concentration. Industrialization for human needs has been increasingly releasing CO2 into the atmosphere for the last century or more. In recent years, the possibility of recycling CO2 to stabilize the atmospheric CO2 concentration and combat rising temperatures has gained attention. Thus, using CO2 as the feedstock to address future world demands is the ultimate solution while controlling the rapid climate change. Valorizing CO2 to produce activated and stable one-carbon feedstocks like formate and methanol and further upgrading them to industrial microbial processes to replace unsustainable feedstocks would be crucial for a future biobased circular economy. However, not all microbes can grow on formate as a feedstock, and those microbes that can grow are not well established for industrial processes.
S. cerevisiae is one of the industrially well-established microbes, and it is a significant contributor to bioprocess industries. However, it cannot grow on formate as a sole carbon and energy source. Thus, engineering S. cerevisiae to grow on formate could potentially pave the way to sustainable biomass and value-added chemicals production.
The Reductive Glycine Pathway (RGP), designed as the aerobic twin of the anaerobic Reductive Acetyl-CoA pathway, is an efficient formate and CO2 assimilation pathway. The RGP comprises of the glycine synthesis module (Mis1p, Gcv1p, Gcv2p, Gcv3p, and Lpd1p), the glycine to serine conversion module (Shmtp), the pyruvate synthesis module (Cha1p), and the energy supply module (Fdh1p). The RGP requires formate and elevated CO2 levels to operate the glycine synthesis module. In this study, I established the RGP in the yeast system using growth-coupled selection strategies to achieve formate and CO2-dependent biomass formation in aerobic conditions.
Firstly, I constructed serine biosensor strains by disrupting the native serine and glycine biosynthesis routes in the prototrophic S288c and FL100 yeast strains and insulated serine, glycine, and one-carbon metabolism from the central metabolic network. These strains cannot grow on glucose as the sole carbon source but require the supply of serine or glycine to complement the engineered auxotrophies. Using growth as a readout, I employed these strains as selection hosts to establish the RGP. Initially, to achieve this, I engineered different serine-hydroxymethyltransferases in the genome of serine biosensor strains for efficient glycine to serine conversion. Then, I implemented the glycine synthesis module of the RGP in these strains for the glycine and serine synthesis from formate and CO2. I successfully conducted Adaptive Laboratory Evolution (ALE) using these strains, which yielded a strain capable of glycine and serine biosynthesis from formate and CO2. Significant growth improvements from 0.0041 h-1 to 0.03695 h-1 were observed during ALE. To validate glycine and serine synthesis, I conducted carbon tracing experiments with 13C formate and 13CO2, confirming that more than 90% of glycine and serine biosynthesis in the evolved strains occurs via the RGP. Interestingly, labeling data also revealed that 10-15% of alanine was labelled, indicating pyruvate synthesis from the formate-derived serine using native serine deaminase (Cha1p) activity. Thus, RGP contributes to a small pyruvate pool which is converted to alanine without any selection pressure for pyruvate synthesis from formate. Hence, this data confirms the activity of all three modules of RGP even in the presence of glucose. Further, ALE in glucose limiting conditions did not improve pyruvate flux via the RGP.
Growth characterization of these strains showed that the best growth rates were achieved in formate concentrations between 25 mM to 300 mM. Optimum growth required 5% CO2, and dropped when the CO2 concentration was reduced from 5% to 2.5%.
Whole-genome sequencing of these evolved strains revealed mutations in genes that encode Gdh1p, Pet9p, and Idh1p. These enzymes might influence intracellular NADPH, ATP, and NADH levels, indicating adjustment to meet the energy demand of the RGP. I reverse-engineered the GDH1 truncation mutation on unevolved serine biosensor strains and reproduced formate dependent growth. To elucidate the effect of the GDH1 mutation on formate assimilation, I reintroduced this mutation in the S288c strain and conducted carbon-tracing experiments to compared formate assimilation between WT and ∆gdh1 mutant strains. Comparatively, enhanced formate assimilation was recorded in the ∆gdh1 mutant strain.
Although the 13C carbon tracing experiments confirmed the activity of all three modules of the RGP, the overall pyruvate flux via the RGP might be limited by the supply of reducing power. Hence, in a different approach, I overexpressed the formate dehydrogenase (Fdh1p) for energy supply and serine deaminase (Cha1p) for active pyruvate synthesis in the S288c parental strain and established growth on formate and serine without glucose in the medium. Further reengineering and evolution of this strain with a consistent energy, and formate-derived serine supply for pyruvate synthesis, is essential to achieve complete formatotrophic growth in the yeast system.
Plants can be primed to survive the exposure to a severe heat stress (HS) by prior exposure to a mild HS. The information about the priming stimulus is maintained by the plant for several days. This maintenance of acquired thermotolerance, or HS memory, is genetically separable from the acquisition of thermotolerance itself and several specific regulatory factors have been identified in recent years.
On the molecular level, HS memory correlates with two types of transcriptional memory, type I and type II, that characterize a partially overlapping subset of HS-inducible genes. Type I transcriptional memory or sustained induction refers to the sustained transcriptional induction above non-stressed expression levels of a gene for a prolonged time period after the end of the stress exposure. Type II transcriptional memory refers to an altered transcriptional response of a gene after repeated exposure to a stress of similar duration and intensity. In particular, enhanced re-induction refers to a transcriptional pattern in which a gene is induced to a significantly higher degree after the second stress exposure than after the first.
This thesis describes the functional characterization of a novel positive transcriptional regulator of type I transcriptional memory, the heat shock transcription factor HSFA3, and compares it to HSFA2, a known positive regulator of type I and type II transcriptional memory. It investigates type I transcriptional memory and its dependence on HSFA2 and HSFA3 for the first time on a genome-wide level, and gives insight on the formation of heteromeric HSF complexes in response to HS. This thesis confirms the tight correlation between transcriptional memory and H3K4 hyper-methylation, reported here in a case study that aimed to reduce H3K4 hyper-methylation of the type II transcriptional memory gene APX2 by CRISPR/dCas9-mediated epigenome editing. Finally, this thesis gives insight into the requirements for a heat shock transcription factor to function as a positive regulator of transcriptional memory, both in terms of its expression profile and protein abundance after HS and the contribution of individual functional domains.
In summary, this thesis contributes to a more detailed understanding of the molecular processes underlying transcriptional memory and therefore HS memory, in Arabidopsis thaliana.
Epigenetische Mechanismen spielen eine entscheidende Rolle bei der Pathogenese von Colitis ulcerosa (CU). Ihr Einfluss auf das beobachtete Ungleichgewicht zwischen pro- und anti-inflammatorischen Cytokinen ist hingegen weitgehend unerforscht. Einige der wichtigsten immunmodulatorischen Cytokine sind die Mitglieder der heterodimeren Interleukin- (IL-) 12-Familie, die durch das Kombinieren einer der drei α-Ketten (IL-12p35, IL-27p28, IL-23p19) mit den ß-Untereinheiten IL-12p40 oder EBI3 (Epstein-Barr Virus-induziertes Gen 3) charakterisiert sind. IL-35 (IL-12p35/EBI3) spielt eine bedeutende anti-inflammatorische Rolle bei verschiedenen Erkrankungen, wohingegen seine Level bei chronischen Entzündungen erniedrigt sind. Eine mögliche Ursache könnte eine transkriptionelle Stilllegung über epigenetische Modifikationen sein. Tatsächlich konnte durch die Stimulation mit dem DNA-Methyltransferase-Inhibitor (DNMTi) Decitabin (DAC; Dacogen®) eine Induktion von EBI3 in humanen Epithelzellen aus gesundem Colon (HCEC) erreicht werden, die als Modell für ein lokales Entzündungsgeschehen dienten. Diese Regulation über DNA-Methylierung konnte in weiteren humanen Zellen unterschiedlichen Ursprungs sowie durch Stimulation von HCEC-Zellen mit zwei weiteren DNMTi, dem Cytosin-Analogon Azacytidin (AZA; Vidaza®) und dem natürlich vorkommenden, epigenetisch wirksamen Polyphenol Epigallocatechingallat (EGCG), verifiziert werden. Die kombinierte Inkubation mit Tumor-Nekrose-Faktor α (TNFα) resultierte jeweils in einer über-additiven Induktion von EBI3.
Weiterführende Untersuchungen zeigten, dass TNFα trotz Beeinflussung der epigenetischen DNMT- und Ten-eleven Translocation- (TET-) Enzyme keinen Einfluss auf die globalen Methylierungs- oder Hydroxymethylierungslevel hatte, jedoch eine genspezifische DNA-Hypomethylierung im EBI3-Promotor induzierte. Durch Nutzung verschiedener Inhibitoren konnte darüber hinaus nachgewiesen werden, dass der beobachtete synergistische Effekt der gemeinsamen DAC und TNFα-Stimulation hauptsächlich über NFκB (Nuclear factor “kappa-light-chain-enhancer” of activated B-cells) vermittelt wird. Ein Teil verläuft dabei über p38 MAPK (mitogen-activated protein kinases), während die JNK- (c-Jun N-terminale Kinasen-) und ERK- (extracellular-signal-regulated kinases) Signalwege keine Rolle spielen.
In der vorliegenden Arbeit wurde zudem gezeigt, dass die DNA-Hypomethylierung während eines entzündlichen Zustandes auch in einer erhöhten EBI3-Proteinexpression resultiert. Die Höhe der immunologisch detektierten Banden wies auf eine Dimerbildung sowohl im Zelllysat als auch im Überstand hin. Humane Colonepithelzellen sind demnach in der Lage, Cytokine zu bilden und zu sezernieren, was die Bedeutung von Nicht-Immunzellen bei der lokalen Immunantwort unterstreicht. Mittels Genexpressionsanalysen wurden IL-12p35 und IL-23p19 als mögliche Bindungspartner identifiziert. Aufgrund kreuzreaktiver Antikörper ist ein direkter Nachweis der EBI3-Dimere derzeit nicht möglich. Die stattdessen genutzte Kombination verschiedener Methoden dient als geeigneter Ersatz für die problematischen Antikörper-basierten Analysen wie Immunpräzipitation oder ELISA. Durch molekularbiologische, immunologische und massenspektrometrische Methoden konnte IL-35 identifiziert werden, während IL-39 (IL-23p19/EBI3) nicht detektiert wurde. Dies ist in Einklang mit den Erkenntnissen mehrerer Forschungsgruppen, die eine Bildung des nativen humanen Dimers aus IL-23p19 und EBI3 bezweifeln. Des Weiteren wurde die biologische Aktivität des behandlungsinduzierten IL 35-Proteins durch einen Funktionsassay nachgewiesen.
Neben einer DNMTi-bedingten transkriptionellen Aktivierung konnte eine Regulation von EBI3 über Histonacetylierungen gezeigt werden. Der EBI3-induzierende Effekt des Histondeacetylasen-Inhibitors (HDACi) Trichostatin A (TSA) wurde durch SAHA (suberoylanilide hydroxamic acid (Vorinostat; Zolinza®)) verifiziert. Ähnlich zu der Stimulation mit den hypomethylierenden Substanzen wurde ein synergistischer Effekt bei paralleler Inkubation mit TNFα beobachtet, der in einer gesteigerten Bildung des EBI3-Proteins resultierte.
Um die Befunde in einem komplexeren in vivo-Modell zu untersuchen, wurde eine chronische Colitis in Ebi3-defizienten Mäusen und dem dazugehörigen Wildtypstamm C57BL/6 durch zyklische Applikation von Natriumdextransulfat (Dextran sodium sulfate (DSS)) induziert. Der Vergleich klinischer Parameter wie Mortalitätsrate und Körper- sowie Milzgewicht wies bei Abwesenheit von Ebi3 signifikant stärkere colitische Symptome auf. Dies bestätigte die zentrale Rolle von Ebi3 in der Colitisentwicklung und deutete auf eine bevorzugte Bildung des anti-inflammatorisch wirkenden IL-35 statt des pro-inflammatorischen IL-39 in den Wildtyptieren hin. Durch zusätzliche therapeutische Behandlung der C57BL/6-Mäuse nach der DSS-Gabe konnte die in der Literatur beschriebene positive Wirkung von SAHA auf die Colitismanifestation bestätigt werden. Im Gegensatz dazu war der HDACi in den Ebi3-defizienten Tieren nicht in der Lage, die colitischen Parameter zu verbessern beziehungsweise verschlimmerte den Krankheitsphänotyp. Expressionsanalysen von Up- und Downstream-Target-Genen lieferten weitere Hinweise darauf, dass bei Anwesenheit von Ebi3 IL-35 statt IL-39 gebildet wird, was in Einklang mit den in vitro-Untersuchungen steht.
Die vorliegende Arbeit konnte durch den Vergleich der C57BL/6-Mäuse mit den Ebi3-defizienten Tieren neue Erkenntnisse über die Wirkungsweise von SAHA erbringen. Histonacetylierende Bedingungen verbessern colitische Symptome über einen Mechanismus, der die epigenetische Induktion von Ebi3 mit nachfolgender IL-35-Bildung involviert. Durch Kooperation der epigenetischen Mechanismen Hypomethylierung und Histonacetylierung wurde der stärkste Effekt auf die EBI3-Induktion bewirkt.
Insgesamt konnte in der vorliegenden Arbeit durch in vitro- und in vivo-Analysen die epigenetische und NFκB-vermittelte Induktion von EBI3 über DNA-Demethylierung und Histonacetylierung mit nachfolgender IL-35-Bildung und –Sezernierung nachgewiesen werden. Da IL-35 in der Lage ist, colitische Symptome zu mildern, stellt die epigenetische Reaktivierbarkeit von EBI3 durch DNMTi und HDACi eine vielversprechende Alternative für die derzeit genutzten, oft nicht oder nur kurzfristig wirksamen Therapien bei der Behandlung einer CU dar. Einer übermäßigen Immunantwort während schubweiser entzündlicher Phasen könnte entgegengewirkt und Komplikationen wie die Bildung Colitis-assoziierter Karzinome verhindert werden.
As of late, epidemiological studies have highlighted a strong association of dairy intake with lower disease risk, and similarly with an increased amount of odd-chain fatty acids (OCFA). While the OCFA also demonstrate inverse associations with disease incidence, the direct dietary sources and mode of action of the OCFA remain poorly understood.
The overall aim of this thesis was to determine the impact of two main fractions of dairy, milk fat and milk protein, on OCFA levels and their influence on health outcomes under high-fat (HF) diet conditions. Both fractions represent viable sources of OCFA, as milk fats contain a significant amount of OCFA and milk proteins are high in branched chain amino acids (BCAA), namely valine (Val) and isoleucine (Ile), which can produce propionyl-CoA (Pr-CoA), a precursor for endogenous OCFA synthesis, while leucine (Leu) does not. Additionally, this project sought to clarify the specific metabolic effects of the OCFA heptadecanoic acid (C17:0).
Both short-term and long-term feeding studies were performed using male C57BL/6JRj mice fed HF diets supplemented with milk fat or C17:0, as well as milk protein or individual BCAA (Val; Leu) to determine their influences on OCFA and metabolic health. Short-term feeding revealed that both milk fractions induce OCFA in vivo, and the increases elicited by milk protein could be, in part, explained by Val intake. In vitro studies using primary hepatocytes further showed an induction of OCFA after Val treatment via de novo lipogenesis and increased α-oxidation. In the long-term studies, both milk fat and milk protein increased hepatic and circulating OCFA levels; however, only milk protein elicited protective effects on adiposity and hepatic fat accumulation—likely mediated by the anti-obesogenic effects of an increased Leu intake. In contrast, Val feeding did not increase OCFA levels nor improve obesity, but rather resulted in glucotoxicity-induced insulin resistance in skeletal muscle mediated by its metabolite 3-hydroxyisobutyrate (3-HIB). Finally, while OCFA levels correlated with improved health outcomes, C17:0 produced negligible effects in preventing HF-diet induced health impairments.
The results presented herein demonstrate that the beneficial health outcomes associated with dairy intake are likely mediated through the effects of milk protein, while OCFA levels are likely a mere association and do not play a significant causal role in metabolic health under HF conditions. Furthermore, the highly divergent metabolic effects of the two BCAA, Leu and Val, unraveled herein highlight the importance of protein quality.
The doctoral thesis presented provides a comprehensive view of laser-based ablation techniques promoted to new fields of operation, including, but not limited to, size, composition, and concentration analyses. It covers various applications of laser ablation techniques over a wide range of sizes, from single molecules all the way to aerosol particles. The research for this thesis started with broadening and deepening the field of application and the fundamental understanding of liquid-phase IR-MALDI. Here, the hybridization of ion mobility spectrometry and microfluidics was realized by using IR-MALDI as the coupling technique for the first time. The setup was used for monitoring the photocatalytic performance of the E-Z isomerization of olefins. Using this hybrid, measurement times were so drastically reduced that such photocatalyst screenings became a matter of minutes rather than hours. With this on hand, triple measurements screenings could not only be performed within ten minutes, but also with a minimum amount of resources highlighting its potential as a green chemistry alternative to batch-sized reactions. Along the optimizing process of the IR-MALDI source for microfluidics came its application for another liquid sample supply method, the hanging drop. This demarcated one of the first applications of IR-MALDI for the charging of sub-micron particles directly from suspensions via their gas-phase transfer, followed by their characterization with differential mobility analysis. Given the high spectral quality of the data up to octuply charged particles became experimentally accessible, this laid the foundation for deriving a new charge distribution model for IR-MALDI in that size regime. Moving on to even larger analyte sizes, LIBS and LII were employed as ablation techniques for the solid phase, namely the aerosol particles themselves. Both techniques produce light-emitting events and were used to quantify and classify different aerosols. The unique configuration of stroboscopic imaging, photoacoustics, LII, and LIBS measurements opened new realms for analytical synergies and their potential application in industry. The concept of using low fluences, below 100 J/cm2, and high repetition rates of up to 500 Hz for LIBS makes for an excellent phase-selective LIBS setup. This concept was combined with a new approach to the photoacoustic normalization of LIBS. Also, it was possible to acquire statistically relevant amounts of data in a matter of seconds, showing its potential as a real-time optimization technique. On the same time axis, but at much lower fluences, LII was used with a similar methodology to quickly quantify and classify airborne particles of different compositions. For the first time, aerosol particles were evaluated on their LII susceptibility by using a fluence screening approach.
The complex hierarchical structure of bone undergoes a lifelong remodeling process, where it adapts to mechanical needs. Hereby, bone resorption by osteoclasts and bone formation by osteoblasts have to be balanced to sustain a healthy and stable organ. Osteocytes orchestrate this interplay by sensing mechanical strains and translating them into biochemical signals. The osteocytes are located in lacunae and are connected to one another and other bone cells via cell processes through small channels, the canaliculi. Lacunae and canaliculi form a network (LCN) of extracellular spaces that is able to transport ions and enables cell-to-cell communication. Osteocytes might also contribute to mineral homeostasis by direct interactions with the surrounding matrix. If the LCN is acting as a transport system, this should be reflected in the mineralization pattern. The central hypothesis of this thesis is that osteocytes are actively changing their material environment. Characterization methods of material science are used to achieve the aim of detecting traces of this interaction between osteocytes and the extracellular matrix. First, healthy murine bones were characterized. The properties analyzed were then compared with three murine model systems: 1) a loading model, where a bone of the mouse was loaded during its life time; 2) a healing model, where a bone of the mouse was cut to induce a healing response; and 3) a disease model, where the Fbn1 gene is dysfunctional causing defects in the formation of the extracellular tissue.
The measurement strategy included routines that make it possible to analyze the organization of the LCN and the material components (i.e., the organic collagen matrix and the mineral particles) in the same bone volumes and compare the spatial distribution of different data sets. The three-dimensional network architecture of the LCN is visualized by confocal laser scanning microscopy (CLSM) after rhodamine staining and is then subsequently quantified. The calcium content is determined via quantitative backscattered electron imaging (qBEI), while small- and wide-angle X-ray scattering (SAXS and WAXS) are employed to determine the thickness and length of local mineral particles.
First, tibiae cortices of healthy mice were characterized to investigate how changes in LCN architecture can be attributed to interactions of osteocytes with the surrounding bone matrix. The tibial mid-shaft cross-sections showed two main regions, consisting of a band with unordered LCN surrounded by a region with ordered LCN. The unordered region is a remnant of early bone formation and exhibited short and thin mineral particles. The surrounding, more aligned bone showed ordered and dense LCN as well as thicker and longer mineral particles. The calcium content was unchanged between the two regions.
In the mouse loading model, the left tibia underwent two weeks of mechanical stimulation, which results in increased bone formation and decreased resorption in skeletally mature mice. Here the specific research question addressed was how do bone material characteristics change at (re)modeling sites? The new bone formed in response to mechanical stimulation showed similar properties in terms of the mineral particles, like the ordered calcium region but lower calcium content compared to the right, non-loaded control bone of the same mice. There was a clear, recognizable border between mature and newly formed bone. Nevertheless, some canaliculi went through this border connecting the LCN of mature and newly formed bone.
Additionally, the question should be answered whether the LCN topology and the bone matrix material properties adapt to loading. Although, mechanically stimulated bones did not show differences in calcium content compared to controls, different correlations were found between the local LCN density and the local Ca content depending on whether the bone was loaded or not. These results suggest that the LCN may serve as a mineral reservoir.
For the healing model, the femurs of mice underwent an osteotomy, stabilized with an external fixator and were allowed to heal for 21 days. Thus, the spatial variations in the LCN topology with mineral properties within different tissue types and their interfaces, namely calcified cartilage, bony callus and cortex, could be simultaneously visualized and compared in this model. All tissue types showed structural differences across multiple length scales. Calcium content increased and became more homogeneous from calcified cartilage to bony callus to lamellar cortical bone. The degree of LCN organization increased as well, while the lacunae became smaller, as did the lacunar density between these different tissue types that make up the callus. In the calcified cartilage, the mineral particles were short and thin. The newly formed callus exhibited thicker mineral particles, which still had a low degree of orientation. While most of the callus had a woven-like structure, it also served as a scaffold for more lamellar tissue at the edges. The lamelar bone callus showed thinner mineral particles, but a higher degree of alignment in both, mineral particles and the LCN. The cortex showed the highest values for mineral length, thickness and degree of orientation. At the same time, the lacunae number density was 34% lower and the lacunar volume 40% smaller compared to bony callus. The transition zone between cortical and callus regions showed a continuous convergence of bone mineral properties and lacunae shape. Although only a few canaliculi connected callus and the cortical region, this indicates that communication between osteocytes of both tissues should be possible. The presented correlations between LCN architecture and mineral properties across tissue types may suggest that osteocytes have an active role in mineralization processes of healing.
A mouse model for the disease marfan syndrome, which includes a genetic defect in the fibrillin-1 gene, was investigated. In humans, Marfan syndrome is characterized by a range of clinical symptoms such as long bone overgrowth, loose joints, reduced bone mineral density, compromised bone microarchitecture, and increased fracture rates. Thus, fibrillin-1 seems to play a role in the skeletal homeostasis. Therefore, the present work studied how marfan syndrome alters LCN architecture and the surrounding bone matrix. The mice with marfan syndrome showed longer tibiae than their healthy littermates from an age of seven weeks onwards. In contrast, the cortical development appeared retarded, which was observed across all measured characteristics, i. e. lower endocortical bone formation, looser and less organized lacuno-canalicular network, less collagen orientation, thinner and shorter mineral particles.
In each of the three model systems, this study found that changes in the LCN architecture spatially correlated with bone matrix material parameters. While not knowing the exact mechanism, these results provide indications that osteocytes can actively manipulate a mineral reservoir located around the canaliculi to make a quickly accessible contribution to mineral homeostasis. However, this interaction is most likely not one-sided, but could be understood as an interplay between osteocytes and extra-cellular matrix, since the bone matrix contains biochemical signaling molecules (e.g. non-collagenous proteins) that can change osteocyte behavior. Bone (re)modeling can therefore not only be understood as a method for removing defects or adapting to external mechanical stimuli, but also for increasing the efficiency of possible osteocyte-mineral interactions during bone homeostasis. With these findings, it seems reasonable to consider osteocytes as a target for drug development related to bone diseases that cause changes in bone composition and mechanical properties. It will most likely require the combined effort of materials scientists, cell biologists, and molecular biologists to gain a deeper understanding of how bone cells respond to their material environment.