• Treffer 2 von 18
Zurück zur Trefferliste

Convergence rates of kernel conjugate gradient for random design regression

  • We prove statistical rates of convergence for kernel-based least squares regression from i.i.d. data using a conjugate gradient algorithm, where regularization against overfitting is obtained by early stopping. This method is related to Kernel Partial Least Squares, a regression method that combines supervised dimensionality reduction with least squares projection. Following the setting introduced in earlier related literature, we study so-called "fast convergence rates" depending on the regularity of the target regression function (measured by a source condition in terms of the kernel integral operator) and on the effective dimensionality of the data mapped into the kernel space. We obtain upper bounds, essentially matching known minimax lower bounds, for the L^2 (prediction) norm as well as for the stronger Hilbert norm, if the true regression function belongs to the reproducing kernel Hilbert space. If the latter assumption is not fulfilled, we obtain similar convergence rates for appropriate norms, provided additional unlabeledWe prove statistical rates of convergence for kernel-based least squares regression from i.i.d. data using a conjugate gradient algorithm, where regularization against overfitting is obtained by early stopping. This method is related to Kernel Partial Least Squares, a regression method that combines supervised dimensionality reduction with least squares projection. Following the setting introduced in earlier related literature, we study so-called "fast convergence rates" depending on the regularity of the target regression function (measured by a source condition in terms of the kernel integral operator) and on the effective dimensionality of the data mapped into the kernel space. We obtain upper bounds, essentially matching known minimax lower bounds, for the L^2 (prediction) norm as well as for the stronger Hilbert norm, if the true regression function belongs to the reproducing kernel Hilbert space. If the latter assumption is not fulfilled, we obtain similar convergence rates for appropriate norms, provided additional unlabeled data are available.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • SHA-1:28aa89c59265d79002ca608152b369e6d0c41b4a

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Gilles BlanchardGND, Nicole Krämer
URN:urn:nbn:de:kobv:517-opus4-94195
ISSN:2193-6943
Schriftenreihe (Bandnummer):Preprints des Instituts für Mathematik der Universität Potsdam (5 (2016) 8)
Verlag:Universitätsverlag Potsdam
Verlagsort:Potsdam
Publikationstyp:Preprint
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Erscheinungsjahr:2016
Veröffentlichende Institution:Universität Potsdam
Veröffentlichende Institution:Universitätsverlag Potsdam
Datum der Freischaltung:08.08.2016
Freies Schlagwort / Tag:conjugate gradient; minimax convergence rates; nonparametric regression; partial least squares; reproducing kernel Hilbert space
Band:5
Ausgabe:8
Seitenanzahl:31
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Klassifikation:62-XX STATISTICS / 62Gxx Nonparametric inference / 62G08 Nonparametric regression
62-XX STATISTICS / 62Gxx Nonparametric inference / 62G20 Asymptotic properties
62-XX STATISTICS / 62Lxx Sequential methods / 62L15 Optimal stopping [See also 60G40, 91A60]
Publikationsweg:Universitätsverlag Potsdam
Sammlung(en):Universität Potsdam / Schriftenreihen / Preprints des Instituts für Mathematik der Universität Potsdam, ISSN 2193-6943 / 2016
Lizenz (Deutsch):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.