
Universitätsverlag Potsdam

Gilles Blanchard | Nicole Krämer

Convergence Rates of Kernel Conjugate 
Gradient for Random Design Regression

Preprints des Instituts für Mathematik der Universität Potsdam 
5 (2016) 8



 



Preprints des Instituts für Mathematik der Universität Potsdam 



 



Preprints des Instituts für Mathematik der Universität Potsdam 
5 (2016) 8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gilles Blanchard | Nicole Krämer 
 

Convergence Rates of Kernel Conjugate Gradient for 
Random Design Regression 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Universitätsverlag Potsdam 



Bibliografische Information der Deutschen Nationalbibliothek  
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der  
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind  
im Internet über http://dnb.dnb.de abrufbar. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Universitätsverlag Potsdam 2016 
http://verlag.ub.uni-potsdam.de/ 
 
Am Neuen Palais 10, 14469 Potsdam 
Tel.: +49 (0)331 977 2533 / Fax: 2292 
E-Mail: verlag@uni-potsdam.de 
 
Die Schriftenreihe Preprints des Instituts für Mathematik der Universität Potsdam wird 
herausgegeben vom Institut für Mathematik der Universität Potsdam. 
 
ISSN (online) 2193-6943 
 
Kontakt:  
Institut für Mathematik 
Karl-Liebknecht-Straße 24/25 
14476 Potsdam 
Tel.: +49 (0)331 977 1499 
WWW: http://www.math.uni-potsdam.de 
 
Titelabbildungen: 
1. Karla Fritze | Institutsgebäude auf dem Campus Neues Palais 
2. Nicolas Curien, Wendelin Werner | Random hyperbolic triangulation 
Published at: http://arxiv.org/abs/1105.5089 
Das Manuskript ist urheberrechtlich geschützt.  
 
Online veröffentlicht auf dem Publikationsserver der Universität Potsdam 
URL https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/9419 
URN urn:nbn:de:kobv:517-opus4-94195 
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94195 

http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-85266


Convergence rates of Kernel Conjugate Gradient for random design

regression

Gilles Blanchard∗

Mathematics Institute, University of Potsdam
Karl-Liebknecht-Straße 24-25
14476 Potsdam, Germany

blanchard@math.uni-potsdam.de

Nicole Krämer
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Abstract

We prove statistical rates of convergence for kernel-based least squares regression from i.i.d.
data using a conjugate gradient algorithm, where regularization against overfitting is obtained
by early stopping. This method is related to Kernel Partial Least Squares, a regression method
that combines supervised dimensionality reduction with least squares projection. Following
the setting introduced in earlier related literature, we study so-called “fast convergence rates”
depending on the regularity of the target regression function (measured by a source condition
in terms of the kernel integral operator) and on the effective dimensionality of the data mapped
into the kernel space. We obtain upper bounds, essentially matching known minimax lower
bounds, for the L2 (prediction) norm as well as for the stronger Hilbert norm, if the true
regression function belongs to the reproducing kernel Hilbert space. If the latter assumption
is not fulfilled, we obtain similar convergence rates for appropriate norms, provided additional
unlabeled data are available.

Keywords: nonparametric regression, reproducing kernel Hilbert space, conjugate gradient,
partial least squares, minimax convergence rates.

MSC: 62G08, 62G20, 62L15.

1 Introduction

1.1 Setting

Consider the nonparametric random design regression (also called “statistical learning”) problem,
where an n-sample of observations (Xi, Yi) ∈ X × R, 1 ≤ i ≤ n is assumed to be drawn i.i.d.
from an unknown distribution P . Here and in the rest of this work, X is assumed to be a Radon
space, for instance an open subset of Rd . The goal is the estimation of the regression function
f∗(x) := E(X,Y )∼P [Y |X = x] ; it is assumed that the true regression function f∗ belongs to the
space L2(ν) of square-integrable functions (ν denotes the X-marginal of P on the space X).

∗This research was partly supported by the DFG via Research Unit 1735 Structural Inference in Statistics.
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If f̂ is an estimator of f∗ , its quality is measured via the L2(ν) distance,∥∥∥f̂ − f∗
∥∥∥2
2,ν

= EX∼ν

[
(f̂(X)− f∗(X))2

]
. (1)

This distance is natural for random design regression, since, if we interpret this setting as a predic-
tion problem for a new independent example (X,Y ) ∼ P where the quality of prediction is measured
by the squared error loss �(f, x, y) = (f(x)− y)2 , then it is well-known that f∗ is the minimizer of
the average prediction (or generalization) error E(f, P ) = E(X,Y )∼P

[
(f(X)− Y )2

]
over all squared

integrable functions, and that the above distance coincides with the excess prediction error:∥∥∥f̂ − f∗
∥∥∥2
2,ν

= E(f̂)− E(f∗) .

Assume that k : X2 → R is a real-valued reproducing kernel on the space X , with associated
reproducing kernel Hilbert space H . The well-established principle of non-parametric estimation
by reproducing kernel methods consists in considering estimators admitting a kernel expansion of
the form

f̂ = fα̂(x) :=
1

n

n∑
i=1

α̂(i)k(Xi, x) , (2)

where the real coefficients α̂(i), 1 ≤ i ≤ n are determined from the data (see for example Cristianini
and Shawe-Taylor, 2004 and Steinwart and Christmann, 2008 for comprehensive references on the
topic.) To avoid some confusion, we point out that the normalization by n−1 that we use here in
the kernel expansion is not present in most references on the subject, but we find it technically
convenient.

We denote by Kn = 1
n(k(Xi, Xj))i,j ∈ R

n×n the normalized kernel matrix and by Υ =
(Y1, . . . , Yn)

� ∈ R
n the n-vector of response observations. A naive approach to determining the

vector of kernel expansion coefficients α̂ is to choose those in order that fα̂(Xi) = Yi holds for all
i = 1, . . . , n , that is, solving the linear equation

Knα = Υ with α ∈ R
n . (3)

Assuming Kn to be invertible, the solution α̂ of the above equation yields an estimator fα̂ ∈ H

interpolating perfectly the training data, but that will presumably have very poor performance
in terms of the L2(ν) distance (1), or equivalently having poor generalization error: this is the
overfitting phenomenon. There is a variety of possible approaches to counteract this effect by
finding a regularized solution of (3); perhaps the most well-known one is

α̂λ = (Kn + λI)−1Υ, (4)

for some fixed parameter λ > 0 , known alternatively as kernel ridge regression, Tikhonov’s regular-
ization, least squares support vector machine, or MAP Gaussian process regression; for a theoretical
study of the convergence rate properties of this approach, see for instance Caponnetto and De Vito
(2007), Steinwart and Christmann (2008).
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In this paper, we study the conjugate gradient (CG) technique in combination with early stop-
ping to determine the vector of coefficients α̂ . Conjugate gradient is a computationally efficient
scheme to approximatively solve linear systems such as (3). The principle of CG is to restrict the
problem to a nested set of data-dependent subspaces, the so-called Krylov subspaces, defined as

Km(Υ,Kn) := vect
{
Υ,KnΥ, . . . ,Km−1

n Υ
}
= {p(Kn)Υ, p ∈ Pm−1} , (5)

where Pm−1 denotes the set of real polynomials of degree at most (m − 1) . Denote by 〈., .〉 the
usual euclidean scalar product on R

n rescaled by the factor n−1 . We define the Kn-seminorm as
‖α‖2Kn

:= 〈α, α〉Kn
:= 〈α,Knα〉 . Then the CG solution after m iterations is formally defined as

α̂m = arg min
α∈Km(Υ,Kn)

‖Υ−Knα‖Kn . (6)

It is not difficult to prove from (5) and (6) that iterating CG for n iterations returns α̂n = K†
nΥ ,

where K†
n is the pseudo-inverse of Kn (in other words, the solution to (3) if Kn is invertible, and its

least squares approximate solution otherwise) and thus will suffer the same overfitting phenomenon
mentioned above. However, CG is usually stopped an early iteration m 	 n , thus returning
an approximate solution. In the learning context considered here, beyond computational aspects
making this method attractive, this early stopping is mainly used for its regularization properties.
The main contribution of this paper is to study the convergence rates of this approach when the
stopping iteration m is suitably chosen.

Computationally, conjugate gradients have the appealing property that the optimization crite-
rion (6) can be computed by a simple iterative algorithm that constructs basis vectors d1, . . . , dm
of Km(Υ,Kn) by using only forward multiplication of vectors by the matrix Kn . Algorithm 1.1
displays the computation of the CG kernel coefficients α̂m defined by (6) (see for instance Hanke,
1995, Section 2.2 and Engl et al., 1996, Chapter 7.) Formally, the output of m steps of the al-
gorithm matches exactly the definition (6). In practice, finite numerical machine precision means
that rounding errors can accumulate. Several variations of the algorithm exist, some of which have
better reported numerical stability. We will not elaborate more on this topic, since the focus of
this paper is on theoretical convergence rates.

Algorithm 1.1: Kernel Conjugate Gradient regression

Input: kernel matrix Kn , response vector Υ , maximum number of iterations m
Initialization: α̂0 = 0n; r1 = Υ; d1 = Υ; t1 = KnΥ;
for i = 1, . . . ,m do

ti = ti/‖ti‖Kn ; di = di/‖ti‖Kn (normalization of the basis, resp. update vector);
γi = 〈Υ, ti〉Kn

(proj. of Υ on basis vector);

α̂i = α̂i−1 + γidi (update);
ri+1 = ri − γiti (residuals);
di+1 = ri+1 − di 〈ti,Knri+1〉Kn

; ti+1 = Kndi+1 (new update, resp. basis vector);

end

Result: CG kernel coefficients α̂m , CG function fm =
∑n

i=1 α̂
(i)
m k(Xi, ·)
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1.2 Relation to existing work

As we restrict the learning problem onto the Krylov space Km(Υ,Kn) , the CG coefficients α̂m are
of the form α̂m = qm(Kn)Υ with qm a polynomial of degree ≤ m − 1 . However, the polynomial
qm is not fixed but depends on Υ as well, making the CG method nonlinear in the sense that the
coefficients α̂m depend on Υ in a nonlinear fashion.

This is in contrast to Tikhonov’s regularization (4), and more generally to the larger family of
spectral linear regularizationmethods, which estimate the expansion coefficients via α̂λ = Fλ(Kn)Υ ,
where Fλ is an appropriately regularized but fixed approximation of the inverse function. For
results on the convergence rates of such linear regularization methods in a kernel learning setting
comparable to the one studied here, see Bauer et al. (2007); Smale and Zhou (2007); Caponnetto
and De Vito (2007); Lo Gerfo et al. (2008); Caponnetto and Yao (2010) and the recent advances
Dicker et al. (2015); Blanchard and Mücke (2016). In particular, the convergence rates under source
condition type regularity and polynomial eigenvalue decay of the kernel integral operator obtained
in the present paper for kernel CG match the rates established for spectral linear regularization
methods by Caponnetto and De Vito (2007); Caponnetto and Yao (2010); Dicker et al. (2015) and
Blanchard and Mücke (2016).

Both linear regularization methods and the nonlinear CG method are established techniques
in the inverse problem literature, in a deterministic setting (for a comprehensive overview see
Engl et al., 1996.) The statistical kernel learning setting is markedly different since both the design
points and the error are stochastic, however the convergence analysis in that setting owes a lot to the
mathematical techniques developed in the deterministic case. This is true for linear regularization
methods cited above, and holds as well for CG: the present work builds notably on the seminal
works of Hanke (1995) and Nemirovskii (1986).

Conjugate gradient methods have appeared under the name of partial least squares (PLS) in
the statistics literature (Wold et al., 1984), and a “kernelized” version of PLS was developed by
Rosipal and Trejo (2001) and is now considered part of the standard toolbox of kernel methods (see
Cristianini and Shawe-Taylor, 2004, Section 6.7.2). An important difference with the method we
study here is that kernel PLS is defined via (6) but with the Kn-norm replaced by the regular n-
dimensional Euclidean norm. In conjugate gradient parlance, kernel PLS can be seen as an instance
of the “Conjugate Gradient - Minimal Error” method (CGME), while the method we analyze here is
comparable to “Conjugate Gradient applied to the Normal Equations” (CGNE); see Hanke (1995),
Section 2.3. Computationally, the two methods are very similar; the main reason we concentrate
on kernel CGNE rather than the perhaps more natural kernel CGME is technical: even in the
deterministic case, the analysis of CGME presents significantly more technical difficulties (Hanke,
1995, Chap. 4).

The results presented here are an extended version of a prior conference paper (Blanchard and
Krämer, 2011). There, a first result was obtained directly based on Nemirovskii’s theorem in the
deterministic case: by controlling (via a simple concentration inequality), with high probability,
the norm of the errors (on the kernel covariance as well as on the data), it was possible to plug
these deterministic estimates directly into Nemirovskii’s theorem, resulting in a bound holding with
large probability. However, it was not possible to capture in this way the “fast convergence rate”
behavior related to an assumed polynomial decay of the kernel operator’s spectrum, a phenomenon
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that is specific to the stochastic setting and the object of much attention in the recent years (often
under the name “adaptation to the intrinsic data dimensionality”). For reasons of readability, in
the present version we decided to skip this first suboptimal (but easy to obtain via Nemirovskii’s
theorem) result, to concentrate on the improved fast rate results. The proof of those follows closely
the general structure of Nemirovskii’s argument and ideas, but requires a complete reworking in
the details due to the additional difficulties arising from taking into account the behavior of the
operator’s spectrum. Furthermore, applying Nemirovskii’s result also required to assume f∗ ∈ H ,
while the case f∗ 
∈ H (called “outer case” below) also introduces additional difficulties. The
present version extends the scope of the original conference version by also including convergence
results not only in the prediction (or L2(ν)) norm, but in stronger norms as well, including the
Hilbert H-norm when applicable.

2 Mathematical framework

2.1 Reproducing kernel Hilbert spaces

We assume the reader familiar with the formalism of reproducing kernel Hilbert spaces (RKHS)
and refer her for instance to Cristianini and Shawe-Taylor (2004) and Steinwart and Christmann
(2008) for more details. We recall briefly a few key points. Given k : X2 → R a real, symmetric and
semi-definite positive kernel on X , the unique RKHS associated to k is denoted by H . We recall
that H is a Hilbert space of real-valued functions on X containing the functions kx = k(x, .) :=
(y ∈ X �→ k(x, y)) for all x ∈ X and satisfying the characteristic self-reproducing property 〈kx, f〉H =
f(x) , for all f ∈ H, x ∈ X . In the rest of this paper we will make the assumption that

(A) k is measurable, for all x ∈ X it holds k(x, x) ≤ κ , where κ is a real constant. The Hilbert
space H is assumed to be separable.

Assumption (A) implies that the kernel integral operator

K : L2(ν) → L2(ν), g �→
∫

k(., x)g(x)dP (x) , (7)

is a well-defined, self-adjoint, Hilbert-Schmidt (and even trace-class) operator. We measure regu-
larity of the target function f∗ in terms of a source condition with respect to K and parameters
ρ > 0, r > 0 , defined as follows:

SC(r, ρ) : there exists u ∈ L2(ν) such that f∗ = Kru with ‖u‖2,ν ≤ κ−rρ.

Clearly, in the above condition we can assume that u ∈ Ker(K)⊥ = Im(K) without loss of generality.
It is well-known that if r ≥ 1/2 , then f∗ coincides almost surely with a function belonging to H ,
while for r < 1/2 this is not the case. We refer to r ≥ 1/2 as the “inner case” and to r < 1/2 as
the “outer case”.

The regularity of the kernel operator K with respect to the marginal distribution ν is measured
in terms of the so-called effective dimensionality condition. We define the auxiliary notation
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N(λ) := Tr(K(K + λI)−1) . Given two parameters s ∈ (0, 1) , D ≥ 1 , introduce the condition

ED(s,D) : N(λ) ≤ D2(κ−1λ)−s for all λ ∈ (0, 1].

This notion was first introduced by Zhang (2005) in a learning context, and used in a number
of works since. It is related to the decay rate of the (ordered) eigenvalues (ξi)i≥1 of K : if those
satisfy ξi ≤ Ci−1/s for some constant C , then ED(s,D) is satisfied for an appropriate constant
D . On the other hand, under the double-sided condition ci−1/s ≤ ξi ≤ Ci−1/s , lower bounds on
the minimax convergence rates for the model defined by the source conditions SC(r, ρ) are known
to be O(n−2r/(2r+s)) for the L2(ν) error (Caponnetto and De Vito, 2007), resp. O(n−(2r−1)/(2r+s))
for the H-norm error, assuming r ≥ 1/2 (Blanchard and Mücke, 2016) .

2.2 Conditions on the noise

If (X,Y ) ∼ P , denote the noise ε := Y − E [Y |X] . We will consider – depending on the result –
one of the following assumptions:

(Bounded) (Bounded Y ): |Y | ≤ M almost surely.

(Bernstein) (Bernstein condition): E [εp|X] ≤ (1/2)p!Mp almost surely, for all integers p ≥ 2 .

The second assumption is weaker than the first. In particular, the first assumption implies that
not only the noise, but also the target function f∗ is bounded in supremum norm, while the second
assumption does not put any additional restriction on the target function.

3 Convergence rates

We now introduce the early stopping rule, which takes the form of a so-called discrepancy stop-
ping rule: for some threshold Ω > 0 to be specified, define the (data-dependent) stopping iteration
m̂ as the first iteration m ≥ 0 (with the convention α̂0 = 0) for which

‖Υ−Knα̂m‖Kn
< Ω . (8)

As mentioned earlier, it holds at the n-th iteration that α̂n = K†
nΥ , so that ‖Υ−Knα̂n‖Kn

= 0 ;
therefore the above stopping rule is well-defined and such that m̂ ≤ n . In this section, we assume
that the parameters r and s appearing in conditions (SC) and (ED) are known a priori to the
user, so that they can be used in the definition of the stopping rule.

Our first result concerns the “inner regularity” case (r ≥ 1/2 , so that the target function f∗

coincides a.s. with a function belonging to H),

Theorem 3.1. For some constant τ ′ > 3/2 and 1 > γ > 0 , consider the discrepancy stopping rule
with the threshold

Ω = τ ′M
√
κ

(
4D√
n
log

6

γ

) 2r+1
2r+s

. (9)
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Suppose that the noise fulfills the Bernstein assumption (Bernstein), that the source condition
SC(r, ρ) holds for r ≥ 1/2 , and that ED(s,D) holds. Finally, assume n is large enough so that

n ≥ 16D2 log2 (6/γ) . (10)

Then with probability 1 − γ , the estimator f̂ = fα̂m̂
obtained by the discrepancy stopping rule

(9) satisfies for any θ ∈ [0, 12 ] :

∥∥∥K−θ(f̂ − f∗)
∥∥∥
2,ν

≤ c(r, τ)(ρ+M)κ−θ

(
4D√
n
log

6

γ

) 2(r−θ)
2r+s

.

Observe that in the above result, taking θ = 1
2 results in a convergence rate result in the

H-norm: this is because for a function g that coincides a.s. with a function gH ∈ H, it holds∥∥K− 1
2 g
∥∥
2,ν

= ‖gH‖H (see Section 5.1 for details). Thus we obtain (simultaneous) convergence rate

results for the L2(ν)-norm, the H-norm as well as all intermediate norms.
We now turn to the “outer rate” case (r < 1

2). In this situation, following an idea used by
Caponnetto and Yao (2010), we make the additional assumption that unlabeled data is available.
Assume that we have ñ i.i.d. observations X1, . . . , Xñ , out of which only the first n are labeled.
We define a new response vector Υ = ñ

n (Y1, . . . , Yn, 0, . . . , 0) ∈ R
ñ and run the CG algorithm 1.1

on X1, . . . , Xñ and Υ . We use the stopping rule with the following threshold:

Ω = τ ′max(ρ,M)
√
κ

(
4D√
n
log

6

γ

) 2r+1
2r+s

. (11)

Observe that it is similar to (9) in the previous section, except the factorM is replaced by max(M,ρ)
(and the numerical constants are different).

Theorem 3.2. For some constant τ ′ > 6 , and γ ∈ (0, 1) , consider the discrepancy stopping rule
with the fixed threshold given by (11) .

Suppose assumptions (Bounded), SC(r, ρ) and ED(s,D), are granted with r < 1
2 and r+ s ≥

1
2 . Assume n is large enough so that

n ≥ 16D2 log2 (4/γ) , (12)

and that additional unlabeled data is available with ñ ≥ n
1+s
2r+s . Then with probability 1 − γ ,the

estimator f̂ obtained by the discrepancy stopping rule defined above satisfies for any θ ∈ [0, r) :

∥∥∥K−θ(f̂ − f∗)
∥∥∥
2,ν

≤ c(r, τ)(ρ+M)κ−θ

(
4D√
n
log

4

γ

) 2(r−θ)
2r+s

.

In the outer case, since f∗ 
∈ H we of course cannot expect any convergence in H-norm, but as
is clear from the above result, we obtain convergence rate results in norms that are stronger than
the L2(ν)-norm, with the meaningful range of θ (determining the strength of the norm) determined
by the source condition parameter r .
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4 Discussion

Rate quasi-optimality. Convergence rates are generally stated in expectation, while the convergence
results of Theorems 3.1 and 3.2 are stated with high probability. Usually, exponential deviation
bounds can be integrated to yield bounds in expectation; unfortunately, this is not directly pos-
sible here, because (a) conditions (10) (resp. (12)) introduce a constraint between the number
of examples n and the probability γ that the bound fails, preventing a statement about extreme
(exponentially small in n) quantiles of the error; and even more importantly (b) the threshold Ω for
the stopping criterion itself depends on the prescribed bound failure probability γ . For the present
discussion, we therefore consider the following slightly weaker notion considered by Caponnetto and
De Vito (2007): we call a positive sequence (an,θ)n≥1 an upper rate of convergence in probability

for the sequence of estimators f̂n over a class of distributions P if

lim
C→∞

lim sup
n→∞

sup
P∈P

P
(Xi,Yi)ni=1

i.i.d.∼ P

[∥∥∥K−θ(f̂n − f∗
P )
∥∥∥
2,ν

> Can,θ

]
= 0 , (13)

On the other hand, for the class of distributions defined by the source condition SC(r, ρ) and the
polynomial decay condition ci−1/s ≤ ξi ≤ Ci−1/s for the eigenvalues (ξi)i≥1 of the kernel integral

operatorK, the convergence rate a∗n,θ := n− r−θ
2r+s is minimax optimal (for lower bounds on attainable

rates see, for instance, Caponnetto and De Vito, 2007 for the case θ = 0 and Blanchard and Mücke,
2016 for the case r ≥ 1

2 , θ ∈ [0, 12 ] .)
We can thus conclude that kernel CG enjoys quasi-optimal statistical rates of convergence, in

the sense that any sequence an,θ such that a∗n,θ = o(an,θ) can be an upper rate of convergence,
provided the stopping iteration is chosen appropriately. Namely, we can choose the sequence of
bound failure probabilities (γn)n≥1 converging to 0 arbitrarily slowly, so that the rate obtained
using the corresponding sequence Ωn in Theorems 3.1 or 3.2 yield (13) with a rate an,θ = a∗n,θcn
where cn tends arbitrarily slowly to ∞.

Comparison of methods. It is known from previous works that a large family of spectral lineariza-
tion methods (see in particular Caponnetto and De Vito, 2007 for Tikhonov regularization, and
Caponnetto and Yao, 2010; Blanchard and Mücke, 2016 for the general case) achieve minimax op-
timal convergence rates in the setting considered here. It is therefore a legitimate question whether
the additional technicality for analyzing CG is justified, given the avaibility of other methods.
The main reason is that CG remains an algorithm of choice because of its excellent computational
properties. Because it very agressively aims at reducing the residual error, it is often observed in
practice that CG converges in much fewer iterations than other methods (such as regular gradient
descent, studied in the kernel learning setting by Yao et al., 2007). For this reason it would be
of interest to analyze the convergence rate of kernel PLS as well, which, as already mentioned
in the introduction, is computationally very similar to kernel CG but more challenging to study
theoretically.

Adaptivity. The quasi-optimal convergence rates obtained in this work use a stopping criterion
with a threshold depending on the parameters r and s (and on ρ in the outer case). It is unrealistic
to assume these various regularity parameters to be known in advance in practice. The question
of automatic choice of a stopping iteration without prior knowledge of these parameters is known
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as that of adaptivity. For what concerns the convergence in excess prediction error L2(ν) , and
under the assumption (Bounded): |Y | ≤ M , it is well known that a simple hold-out strategy
(i.e. choosing, amongst a family of candidate estimators, the one achieving minimal error on an
held-out validation sample), performed after trimming all candidate estimators f̂m to the interval
[−M,M ] , generally speaking selects an estimator close to the best between those considered. In
the present context, each iteration m provides such a candidate estimate; one could for example
adapt the corresponding arguments from Caponnetto and Yao (2010) ; see also Blanchard and
Massart (2006) for a general point of view on this question. As a consequence, since the results
established here grant the existence of an iteration with quasi-optimal rate, this will also be the
case for the adaptive hold-out strategy. It remains an open question whether this also applies to
the error measured in stronger norms: although we established that there exists an iteration with
optimal rates for all norms, it does not follow that any iteration which is good in the sense of excess
prediction (one of which hold-out would select) would automatically also yield good performance
for the stronger norms.

5 Proofs

The proof of our results rely on combining ideas of Hanke (1995) (expanding upon the remarkable
seminal work of Nemirovskii, 1986), used in the analysis of convergence of CG algorithms for
(deterministic) inverse problems, with tools introduced by De Vito et al. (2006), Caponnetto and
De Vito (2007), Smale and Zhou (2007), Caponnetto and Yao (2010) for the analysis of inverse
problem methods for the statistical learning setup. We start by gathering in the two next sections
the required notation and previous results that we will make use of, before getting to the proof
itself. In all the proofs, we use the notation c(a, b) to denote a nonrandom function only depending
on the nonrandom parameters a, b , and whose exact value can change from line to line.

5.1 Setup and key tools for statistical learning as an inverse problem

We first define the empirical evaluation operator Tn as follows:

Tn : g ∈ H �→ Tng := (g(X1), . . . , g(Xn))
� ∈ R

n

and the empirical integral operator T ∗
n as:

T ∗
n : u = (u1, . . . , un) ∈ R

n �→ T ∗
nu :=

1

n

n∑
i=1

uik(Xi, ·) ∈ H.

Using the reproducing property of the kernel, it can be readily checked that Tn and T ∗
n are adjoint

operators, i.e. they satisfy 〈T ∗
nu, g〉H = 〈u, Tng〉 , for all u ∈ R

n, g ∈ H . With this notation, it is
clear that if α̂ ∈ R

n is the vector of coefficients in the normalized kernel expansion (2) of a kernel
estimator f̂ , then if holds f̂ = T ∗

n α̂ . Furthermore, since Kn = TnT
∗
n , we have for any u ∈ R

n :

‖u‖2Kn
= 〈u,Knu〉 = ‖T ∗

nu‖2H .

9



Based on these facts, equation (6) can be rewritten as

α̂m = arg min
α∈Km(Υ,Kn)

‖T ∗
nΥ− T ∗

nTnT
∗
nα‖H ,

implying that for the m-th iteration estimator fm = T ∗
n α̂m , it holds

fm = arg min
f∈Km(T ∗

nΥ,Sn)
‖T ∗

nΥ− Snf‖H , (14)

where Sn = T ∗
nTn is a self-adjoint operator of H , called empirical covariance operator. In the sequel

we will mainly refer to (14) as the characterization of the CG method.
The advantage of this reformulation, and an idea first introduced by De Vito et al. (2006), is

that it can be interpreted as a perturbation of a population, noiseless version (of the equation and
of the algorithm), wherein Υ is replaced by the target function f∗ and the empirical operators
T ∗
n , Tn are respectively replaced by their population analogues, the kernel integral operator

T ∗ : g ∈ L2(ν) �→ T ∗g :=

∫
k(x, .)g(x)dν(x) = E [k(X, ·)g(X)] ∈ H ,

and the change-of-space (or inclusion) operator

T : g ∈ H �→ g ∈ L2(ν) .

The latter maps a function to itself but between two Hilbert spaces which differ with respect to
their geometry – the inner product of H being defined by the kernel function k , while the inner
product of L2(ν) depends on the data generating distribution. This operator is well defined: since
the kernel is bounded, all functions in H are bounded and therefore square integrable under any
distribution ν ; this also implies that T ∗ is well-defined. Again, it can be checked due to the
reproducing property that T, T ∗ are adjoint of each other; we denote S := T ∗T the population
covariance operator, and observe that K = TT ∗ holds, where K is the operator defined by (7).

Finally, it holds that S− 1
2T ∗ is a partial isometry from L2(ν) to H , and K− 1

2T a partial isometry
from H to L2(ν) . In particular, if g ∈ L2(ν) coincides a.s. with some function gH ∈ H , then it

holds g = TgH with ‖gH‖H =
∥∥K− 1

2TgH
∥∥
2,ν

=
∥∥K− 1

2 g
∥∥
2,ν

.

The next lemma was established by Caponnetto and De Vito (2007), based on a Bernstein-
type inequality for random variables taking values in a Hilbert space, see Pinelis and Sakhanenko
(1985); Yurinski (1995). It bounds with high probability the deviations between the quantities
in the normal equations (??) and their population counterparts. A key insight from Caponnetto
and De Vito (2007) is that in order to obtain sharp bounds on convergence rates, these deviations
should be measured in a “warped” norm rather than in the standard norm:

Lemma 5.1. Let λ be a positive number. Under assumption (Bounded), the following holds:

P

[∥∥∥(S + λI)−
1
2 (T ∗

nΥ− T ∗f∗)
∥∥∥
H
≤ 2M

(√
N(λ)

n
+

2
√
κ√

λn

)
log

2

γ

]
≥ 1− γ . (15)
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If the representation f∗ = Tf∗
H holds and under assumption (Bernstein), we have the following:

P

[∥∥∥(S + λI)−
1
2 (T ∗

nΥ− Snf
∗
H)
∥∥∥
H
≤ 2M

(√
N(λ)

n
+

2
√
κ√

λn

)
log

2

γ

]
≥ 1− γ . (16)

Concerning the convergence of empirical covariance in the sense of operators, the following holds:

P

[∥∥∥(S + λI)−
1
2 (Sn − S)

∥∥∥
HS

≤ 2
√
κ

(√
N(λ)

n
+

2
√
κ√

λn

)
log

2

γ

]
≥ 1− γ , (17)

as well as:

P

[
‖Sn − S‖HS ≤ 4κ√

n

√
log

2

γ

]
≥ 1− γ , (18)

where ‖.‖HS denotes the Hilbert-Schmidt norm.

5.2 Key tools for the analysis of CG using orthogonal polynomials theory

We denote by (ξn,i, en,i)i∈I (respectively (ξi, ei)i∈I) an eigenvalue-eigenvector orthogonal basis with
ξn,i, ξi ∈ [0, κ] for the operator Sn , respectively S . Since the rank of Sn is at most n , the family
(ξn,i)i∈I has at most n nonzero terms (while the family (ξi)i∈I has at most countably many nonzero
terms, S being compact).

Using the formalism of functional calculus for operators, if φ : [0, κ] → R is a bounded and
measurable function, we denote

φ(Sn) :=
∑
i∈I

φ(ξn,i)en,ie
∗
n,i and φ(S) :=

∑
i∈I

φ(ξi)eie
∗
i .

We recall the “switching” rule Tφ(S) = φ(K)T ∗ since S = T ∗T , K = TT ∗ , which we will be using
often. In the sequel, ‖A‖ denotes the operator norm of an operator A . The above definition implies
in particular the bound

‖φ(Sn)‖ ≤ sup
t∈[0,κ]

|φ(t)| .

For u ≥ 0 , denote Fu = 1[0,u)(Sn) , that is, the orthogonal projector in H onto the subspace
vect {en,i, i ∈ I s.t. ξn,i < u} spanned by eigenvectors of Sn corresponding to eigenvalues strictly
less than u . Observe that Fu depends on the data because Sn does, but we omit the index n at
this juncture to simplify notation, and because we will not make use of the corresponding notion
for S , so that there is no risk of confusion. Finally, for an integer � introduce the measure

μ(�)
n :=

∑
i∈I

ξ�n,i 〈T ∗
nΥ, en,i〉2 δξn,i

,

where δx denotes the Dirac delta-measure at point x . In particular, for � = 0 we use the convention
00 = 1 and it holds for a bounded measurable function φ : [0, κ] → R :

‖φ(Sn)T
∗
nΥ‖2H =

∑
i∈I

φ(ξn,i)
2 〈T ∗

nΥ, en,i〉2 =
∫

φ(t)2dμ(0)
n (t) .

11



Observe that, for i ∈ I such that ξn,i = 0 , we have 〈T ∗
nΥ, en,i〉 = 〈Υ, Tnen,i〉 = 0 since en,i ∈

ker(T ∗
nTn) = ker(Tn) . Therefore, the measures μ

(�)
n have finite support (independent of �) of

cardinality nΥ ≤ n . In fact nΥ is the number of distinct positive eigenvalues of Kn such that Υ
has nonzero projection on the corresponding eigenspace (or equivalently, the number of distinct
positive eigenvalues of Sn such that T ∗

nΥ has nonzero projection on the corresponding eigenspace).
With this formalism established, we turn to properties of the CG method (see, e.g., Hanke,

1995, and Engl et al., 1996, Chapter 7). By its definition, the output of the m-th iteration of the
CG algorithm can be put under the form fm = qm(Sn)T

∗
nΥ , where qm ∈ Pm−1 , the vector space

of real polynomials of degree at most m− 1 . A crucial role is played by the residual polynomial

pm(x) = 1− xqm(x) ∈ P0
m ,

where P0
m is the affine space of real polynomials of degree no greater than m and having constant

term equal to 1. In particular T ∗
nΥ− Snfm = pm(Sn)T

∗
nΥ . For � ≥ 0 we define

[p, q](�) :=

∫ κ

0
p(t)q(t)dμ(�)

n (t) =
〈
p(Sn)T

∗
nΥ, S�

nq(Sn)T
∗
nΥ

〉
=
∑
i≥1

p(ξn,i)q(ξn,i)ξ
�
n,i 〈T ∗

nΥ, en,i〉2 .

Since the measure μ
(�)
n has support of cardinality nΥ , [., .](�) is a scalar product on the space

PnΥ−1 . Consider an iteration m < nΥ . By (14), qm is the minimizer of ‖(I − Snq(Sn))T
∗
nΥ‖2H over

q ∈ Pm−1 , so that the residual polynomial pm is equivalently a minimizer of ‖p(Sn)T
∗
nΥ‖2H = [p, p](0)

over p ∈ P0
m . In other words, pm is the orthogonal projection of the origin onto the affine subspace

P0
m ⊂ Pm for the scalar product [., .](0) . This, in passing, shows the unicity of pm , and by

consequence of qm and fm . In the case m = 0 , we set q0 = 0, p0 ≡ 1 .
We denote by π the shift operation on polynomials with (πq)(x) = xq(x) . Since P0

m = 1+πPm−1

is an affine subspace of Pm parallel to πPm−1 , it follows by the properties of projections that pm is
orthogonal to πPm−1 for [., .](0) . Thus 0 = [pm, πq](0) = [pm, q](1) for any q ∈ Pm−1 ; this establishes
that p0, p1, . . . , pnΥ−1 is an orthogonal polynomial sequence with respect to [., .](1) . For m = nΥ ,
this is somewhat of a special case since [., .](�) is only a semidefinite product on PnΥ . However, it
is not difficult to see that the polynomial pnΥ having nΥ distinct roots corresponding to the atoms

of μ
(0)
n and normalized to have constant term equal to 1, is the unique element of P0

nΥ
satisfying

[pnΥ , pnΥ ](0) = 0 . Therefore, unicity of the solution also holds for m = nΥ , and obviously also
[pnΥ , pm](1) = 0 for all m ≤ nΥ . The CG method will not in any case go beyond iteration m = nΥ ,
since at this point, by the above considerations the residual norm is 0 and an exact solution to the
equation Snf = T ∗

nΥ has been reached. (See also Hanke, 1995, Section 2.1.)
The next lemma gathers the technical results coming from the theory of orthogonal polynomials

needed for our analysis.

Lemma 5.2. Let m be any integer satisfying 1 ≤ m ≤ nΥ .
i) The polynomial pm has exactly m distinct roots belonging to (0, κ] , denoted by (xk,m)1≤k≤m

in increasing order.
ii) pm is positive, decreasing and convex on the interval [0, x1,m) .

12



iii) Define the function ϕm on the interval [0, x1,m) as

ϕm(x) = pm(x)

(
x1,m

x1,m − x

) 1
2

.

Then it holds

[pm, pm]
1
2

(0) = ‖pm(Sn)T
∗
nΥ‖H ≤ ∥∥Fx1,mϕm(Sn)T

∗
nΥ

∥∥
H

, (19)

and furthermore, for any ν ≥ 0 (and the convention 00 = 1):

sup
x∈[0,x1,m]

xνϕ2
m(x) ≤ νν

∣∣p′m(0)
∣∣−ν

. (20)

iv) Denote p
(2)
0 , p

(2)
1 , . . . , p

(2)
nΥ−1 the unique sequence of orthogonal polynomials with respect to

[., .](2) and with constant term equal to 1. This sequence enjoys properties (i) and (ii) above, with

(x
(2)
k,m)1≤k≤m denoting the distinct roots of p

(2)
m in increasing order. Then it holds that x1,m ≤ x

(2)
1,m .

Finally, the following holds (Christoffel-Darboux identity):

0 ≤ p′m−1(0)− p′m(0) =
[pm−1, pm−1](0) − [pm, pm](0)[

p
(2)
m−1, p

(2)
m−1

]
(1)

≤
[pm−1, pm−1](0)[
p
(2)
m−1, p

(2)
m−1

]
(1)

. (21)

For a proof of these properties see the monograph of Hanke (1995), from which the above

properties have been collected. Existence of a unique family of orthogonal polynomials p
(�)
k for

any � ≥ 0 , up to degree nΥ − 1, is guaranteed by the fact that the measures μ
(�)
n have support of

cardinality nΥ . Point (i) is well-known in the theory of orthogonal polynomials, see also Hanke
(1995), Section 2.4. Point (ii) is equally well-known and an easy consequence of (i), namely (ii)
holds true for any real polynomial of degree m having m real positive roots and taking a positive
value at 0, due to the interlacing property of the roots of its derivatives. For point (iv), all roots

of p
(2)
m are positive by standard results of orthogonal polynomial theory, so we can normalize these

polynomials to have constant term equal to 1. Relation (21), resp. the relation x1,m ≤ x
(2)
1,m can be

found as Corollary 2.6, resp. 2.7, of Hanke (1995). Finally, point (iii) can be found as an ingredient
of the proof of Lemma 3.7 of Hanke (1995), more precisely (19),(20) are found respectively as (3.8)
and (3.10) there (or equivalently as (7.7) and (7.8) in Chapter 7 of Engl et al., 1996). The seminal
idea of introducing the function ϕm above and properties (19)-(20) are originally due to Nemirovskii
(1986).

5.3 Proof of Theorem 3.1

We recall that since we assume r ≥ 1/2 , there exists f∗
H ∈ H such that f∗ = Tf∗

H holds. The
main effort below is to analyze the algorithm when the events of high probability of Lemma 5.1 are
satisfied. To simplify notation, we will define the following event, where Λ ≥ 1,Δ ≥ 0 are constants
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and δ(λ) ≥ 0 only depends on λ :

B(λ) :

⎧⎪⎪⎨⎪⎪⎩
∥∥∥(S + λI)−

1
2 (T ∗

nΥ− Snf
∗
H)
∥∥∥
H

≤ δ(λ) ,∥∥(S + λI)(Sn + λI)−1
∥∥
HS

≤ Λ2,

‖S − Sn‖HS ≤ κΔ .

In the rest of this proof we set μ = r − 1/2 . Under the source condition assumption SC(r, ρ), for
r ≥ 1

2 the representation f∗ = Kru can be rewritten

f∗ = (TT ∗)ru = T (T ∗T )r−
1
2 (T ∗T )−

1
2T ∗u = TSμS− 1

2T ∗u,

by identification we therefore have the source condition for fH given by fH = Sμw with w =
S− 1

2T ∗u , and ‖w‖H ≤ ‖u‖2,ν ≤ κ−μ− 1
2 ρ , since S− 1

2T ∗ is a partial isometry from L2(ν) into H .
Finally we define following shortcut notation for β > 0 :

Zβ(λ) =

{
λβ for β ≤ 1 ,

κβΔ for β > 1.
(22)

In order to simplify notation, for the remainder of the paper we will omit the indices from ‖.‖H
and ‖.‖2,ν ; in other words the notation ‖.‖ will be overloaded to mean operator, H or L2(ν) norm,

depending (nonambiguously) on the context. Note that the L2(ν) norm will not be explicitly used
again until the proof of Theorem 3.2 in Section 5.4.

We start with a technical lemma encapsulating a couple of bounding devices that we will use
repeatedly.

Lemma 5.3. Let λ > 0 be fixed. Assume the event B(λ) is satisfied. For any ν ∈ [0, 1] , it holds∥∥(S + λI)ν(Sn + λI)−ν
∥∥ ≤ Λ2ν . (23)

For any ν ∈ [0, 1] , and any h ∈ H , it holds

‖Sνh‖ ≤ Λ2ν ‖(Sn + λ)νh‖ . (24)

For any ν > 0 and for any φ : [0, κ] → R measurable function, it holds

‖φ(Sn)S
ν‖ ≤ Λ2

(
sup

t∈[0,κ]
tνφ(t) + (ν ∨ 1)Zν(λ) sup

t∈[0,κ]
φ(t)

)
. (25)

Proof. Inequality (23) is a direct consequence of the second component in event B(λ), and of the
operator norm inequality ‖AνBν‖ ≤ ‖AB‖ν for self-adjoint positive operators and ν ∈ [0, 1]. See
Bathia (1997), Theorem X.1.1, where the result is stated for positive matrices, but the proof applies
as well to positive operators on a Hilbert space. For the second inequality, we have

‖Sνh‖ ≤ ∥∥Sν(S + λI)−ν
∥∥ ∥∥(S + λI)ν(Sn + λI)−ν

∥∥ ‖(Sn + λI)νh‖ ≤ Λ2ν ‖(Sn + λ)νh‖ .
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Concerning the last part of the lemma, we first consider the case ν > 1 ; then

‖φ(Sn)S
ν‖ ≤ ‖φ(Sn)‖ ‖(Sν − Sν

n)‖+ ‖φ(Sn)S
ν
n‖

≤ sup
t∈[0,κ]

tνφ(t) + ‖(Sν − Sν
n)‖ sup

t∈[0,κ]
φ(t)

Furthermore, we have

‖(Sν − Sν
n)‖ ≤ ‖(Sν − Sν

n)‖HS ≤ νκν−1 ‖S − Sn‖HS ≤ νκνΔ.

The second inequality used that if A,B are two semipositive self-adjoint Hilbert-Schmidt operators,
and φ is a L-Lipschitz function on [0,max(‖A‖ , ‖B‖)] , then ‖φ(A)− φ(B)‖HS ≤ L ‖A−B‖HS (see,
for instance, Bathia, 1997, Lemma VII.5.5, for a proof in the finite dimensional case that can be
easily extended to the Hilbert-Schmidt case. Note in passing that this inequality does not hold for
the operator norm in general). We applied this property to the power function x �→ xν , which is
νκν−1-Lipschitz over [0, κ] .

In the case ν ≤ 1 , we have

‖φ(Sn)S
ν‖ ≤ ‖φ(Sn)(Sn + λI)ν‖ ∥∥(Sn + λI)−ν(S + λI)ν

∥∥ ∥∥(S + λI)−νSν
∥∥

≤ Λ2ν

(
sup

t∈[0,κ]
tνφ(t) + λν sup

t∈[0,κ]
φ(t)

)
.

Lemma 5.4 (Bounding the error). Assume condition SC(r, ρ) holds, r ≥ 1
2 . For any λ > 0 ,

if the event B(λ) is satisfied, then for any iteration step 1 ≤ m ≤ nΥ and θ ∈ [0, 12 ] , for any

ε ∈ (0, x1,m) , and denoting ε̃ := min(ε, |p′m(0)|−1) :

∥∥∥S 1
2
−θ(fm − f∗

H)
∥∥∥ ≤c(Λ, μ)

(
ε̃−1 (ε̃+ λ)1−θ δ(λ) + (εμ + Zμ(λ)) (ε+ λ)

1
2
−θκ−μ− 1

2 ρ

+ ε−1 (ε+ λ)
1
2
−θ ‖T ∗

n(Tnfm −Υ)‖
)

For m = 0 , the above inequality is valid for any ε > 0 .

Proof. Set f̄m = qm(Sn)Snf
∗
H . This is the element in H that we obtain by applying the mth-

iteration CG polynomial qm to the noiseless data. We have using (24)∥∥∥S 1
2
−θ(fm − f∗

H)
∥∥∥ ≤ Λ1−2θ

∥∥∥(Sn + λI)
1
2
−θ(fm − f∗

H)
∥∥∥

≤ Λ
(∥∥∥Fε(Sn + λI)

1
2
−θ(fm − f̄m)

∥∥∥+
∥∥∥Fε(Sn + λI)

1
2
−θ(f̄m − f∗

H)
∥∥∥

+
∥∥∥F⊥

ε (Sn + λI)
1
2
−θ(fm − f∗

H)
∥∥∥)

:= Λ((I) + (II) + (III)) ,
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where we denote F⊥
ε := (I − Fε) . We upper bound the first summand and start with using the

first component of event B(λ):

(I) =
∥∥∥Fε(Sn + λI)

1
2
−θ(fm − f̄m)

∥∥∥ =
∥∥∥Fε(Sn + λI)

1
2
−θqm(Sn)(S + λI)

1
2 (S + λI)−

1
2 (T ∗

nΥ− Snf
∗
H)
∥∥∥

≤
∥∥∥Fε(Sn + λI)1−θqm(Sn)

∥∥∥ ∥∥∥(Sn + λI)−
1
2 (S + λI)

1
2

∥∥∥ δ(λ)
≤ Λδ(λ)

(
sup

x∈[0,ε]
x1−θqm(x) + λ1−θ sup

x∈[0,ε]
qm(x)

)

≤ Λδ(λ)

⎛⎝( sup
x∈[0,ε]

qm(x)

)θ(
sup

x∈[0,ε]
xqm(x)

)1−θ

+ λ1−θ
∣∣p′m(0)

∣∣⎞⎠
≤ Λδ(λ)

(∣∣p′m(0)
∣∣θ + λ1−θ

∣∣p′m(0)
∣∣)

≤ 2Λδ(λ)ε̃−1 (λ+ ε̃)1−θ .

The second to last inequality is obtained by the following argument: if m ≥ 1 , since ε ≤ x1,m , pm
is decreasing and convex in [0, ε] (see Lemma 5.2, point (ii) ), we have

qm(x) =
1− pm(x)

x
≤ ∣∣p′m(0)

∣∣ for x ∈ [0, ε] ;

and also xqm(x) = 1 − pm(x) ≤ 1 for x ∈ [0, ε] . If m = 0 , we have p0 ≡ 1 and qm ≡ 0 , so that
fm = f̄m = 0 and the above upper bound is also trivially satisfied for any ε > 0 .
Second summand: Using (25), and the fact that |pm(x)| ≤ 1 for x ∈ [0, ε] :

(II) =
∥∥∥Fε(Sn + λI)

1
2
−θ(f̄m − f∗

H)
∥∥∥ =

∥∥∥Fε(Sn + λI)
1
2
−θpm(Sn)S

μw
∥∥∥

≤ Λ2
(
εμ(ε+ λ)

1
2
−θ + c(μ)Zμ(λ)(ε+ λ)

1
2
−θ
)
‖w‖

≤ Λ2 (εμ + c(μ)Zμ(λ)) (ε+ λ)
1
2
−θκ−μ− 1

2 ρ.

Third summand: observe that since F⊥
ε = 1[ε,∞)(Sn) , we can write F⊥

ε = F⊥
ε S−1

n Sn and

(III) =
∥∥∥F⊥

ε (Sn + λI)
1
2
−θ(fm − f∗

H)
∥∥∥ ≤

∥∥∥F⊥
ε (Sn + λI)1−θS−1

n

∥∥∥ ∥∥∥F⊥
ε (Sn + λI)−

1
2Sn(fm − f∗

H)
∥∥∥

≤ (ε+ λ)1−θ ε−1
(∥∥∥F⊥

ε (Sn + λI)−
1
2T ∗

n(Tnfm −Υ)
∥∥∥

+
∥∥∥(Sn + λI)−

1
2 (T ∗

nΥ− Snf
∗
H)
∥∥∥)

≤ ε−1 (ε+ λ)
1
2
−θ ‖T ∗

n(Tnfm −Υ)‖+ Λε−1 (ε+ λ)1−θ δ(λ) .

Gathering the three terms and rearranging leads to the announced inequality.
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Lemma 5.5 (Bounding the residue). Assume condition SC(r, ρ) holds, r ≥ 1
2 . Let λ > 0 be fixed

and assume event B(λ) holds. Then for any iteration step 1 ≤ m ≤ nΥ :

‖T ∗
n(Tnfm −Υ)‖ ≤c(μ)Λ2

(∣∣p′m(0)
∣∣−(μ+1)

+ Zμ(λ)
∣∣p′m(0)

∣∣−1
)
κ−μ− 1

2 ρ

+
(∣∣p′m(0)

∣∣− 1
2 + λ

1
2

)
Λδ(λ) . (26)

Proof. Using (19) of Lemma 5.2 and the notation therein, it holds

‖T ∗
n(Tnfm −Υ)‖ = ‖pm(Sn)T

∗
nΥ‖ ≤ ∥∥Fx1,mϕm(Sn)T

∗
nΥ

∥∥
≤ ∥∥Fx1,mϕm(Sn)Snf

∗
H

∥∥+
∥∥Fx1,mϕm(Sn)(T

∗
nΥ− Snf

∗
H)
∥∥

:= (I) + (II).

We start with controlling the second term:

(II) =
∥∥Fx1,mϕm(Sn)(T

∗
nΥ− Snf

∗
H)
∥∥ =

∥∥∥Fx1,mϕm(Sn)(S + λI)
1
2 (S + λI)−

1
2 (T ∗

nΥ− Snf
∗
H)
∥∥∥

≤
∥∥∥Fx1,mϕm(Sn)(Sn + λI)

1
2

∥∥∥Λδ(λ)
≤
(

sup
x∈[0,x1,m]

x
1
2ϕm(x) + λ

1
2 sup
x∈[0,x1,m]

ϕm(x)

)
Λδ(λ)

≤
(∣∣p′m(0)

∣∣− 1
2 + λ

1
2

)
Λδ(λ) ,

where we used (23), the first component of event B(λ), and in the last line inequality (20) with
ν = 0, 1 . For the first term, we use assumption SC(r, ρ), then (25):

(I) =
∥∥Fx1,mϕm(Sn)Snf

∗
H

∥∥ =
∥∥Fx1,mϕm(Sn)SnS

μw
∥∥

≤ Λ2

(
sup

t∈[0,x1,m]
tμ+1ϕm(t) + c(μ)Zμ(λ) sup

t∈[0,x1,m]
tϕm(t)

)
κ−μ− 1

2 ρ

≤ c(μ)Λ2
(∣∣p′m(0)

∣∣−(μ+1)
+ Zμ(λ)

∣∣p′m(0)
∣∣−1

)
κ−μ− 1

2 ρ ,

where for the last inequality we applied (20) with ν = 2(μ+ 1) , ν = 2 .

We now consider the sequence of polynomials p
(2)
m that are orthogonal with respect to the scalar

product [., .](2) (see Lemma 5.2, point (iv) ). For notational convenience and compatibility below

we define x1,0 = x
(2)
1,0 = ∞ .

Lemma 5.6. Assume condition SC(r, ρ) holds, r ≥ 1
2 . For any λ > 0 , if the event B(λ) is

satisfied, then for any iteration step 1 ≤ m ≤ nΥ , and any ε ∈ (0, x1,m−1) :

[pm−1, pm−1]
1
2

(0) = ‖pm−1(Sn)T
∗
nΥ‖

≤ Λ(ε+ λ)
1
2 δ(λ) + c(μ)Λ2ε (εμ + Zμ(λ))κ

−μ− 1
2 ρ+ ε−

1
2

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)
. (27)
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Proof. By the optimality property defining the CG algorithm,

‖pm−1(Sn)T
∗
nΥ‖ ≤

∥∥∥p(2)m−1(Sn)T
∗
nΥ

∥∥∥ ≤
∥∥∥Fεp

(2)
m−1(Sn)T

∗
nΥ

∥∥∥+
∥∥∥F⊥

ε p
(2)
m−1(Sn)T

∗
nΥ

∥∥∥
≤ ‖FεT

∗
nΥ‖+ ε−

1
2

∥∥∥∥p(2)m−1(Sn)S
1
2
n T

∗
nΥ

∥∥∥∥
= ‖FεT

∗
nΥ‖+ ε−

1
2

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)

For the last inequality, we have used the fact that |p(2)m−1(x)| ≤ 1 for x ∈ [0, x
(2)
m−1] , (since p

(2)
m−1(0) =

1 and p
(2)
m−1 is nonincreasing on [0, x

(2)
m−1], the case m = 1 being trivial) along with the assumption

0 < ε < x1,m−1 , as well as x1,m−1 ≤ x
(2)
1,m−1 (for both of these properties see Lemma 5.2, point

(iv)). We now bound

‖FεT
∗
nΥ‖ ≤ ‖Fε(T

∗
nΥ− Snf

∗
H)‖+ ‖FεSnf

∗
H‖

≤
∥∥∥Fε(Sn + λI)

1
2

∥∥∥ ∥∥∥(Sn + λI)−
1
2 (T ∗

nΥ− Snf
∗
H)
∥∥∥+ ‖FεSnS

μw‖
≤ Λ(ε+ λ)

1
2 δ(λ) + ‖FεSnS

μw‖
≤ Λ(ε+ λ)

1
2 δ(λ) + c(μ)Λ2ε (εμ + Zμ(λ))κ

−μ− 1
2 ρ,

where we have used (25) for the last line.

Proof of Theorem 3.1.
We set

λ̃∗ =
(
4D log 6γ−1

√
n

) 2
2μ+s+1

, and λ∗ := κλ̃∗ . (28)

(This normalization was introduced by Caponnetto and Yao, 2010.) The assumed lower bound (10)
on n ensures λ̃∗ ≤ 1 . We rewrite equivalently the discrepancy stopping rule as follows: for some
fixed τ > 0 ,

m̂ := min

{
m ≥ 0 : ‖T ∗

n(Tnfm −Υ)‖ ≤ (2 + τ)λ
1
2∗ δ(λ∗)

}
, (29)

where

δ(λ∗) :=
3

4
Mλ̃

μ+ 1
2∗ . (30)

Observe that the above τ > 0 is related from the constant τ ′ > 3/2 in (9) via τ = 4
3(τ

′ − 3
2) .

We first check that event B(λ∗), is satisfied with large probability, using for this concentration

18



results which were recalled in Lemma 5.1. From inequality (16), with probability 1− γ/3 we have

∥∥∥(S + λ∗I)−
1
2 (T ∗

nΥ− Snf
∗
H)
∥∥∥ ≤ 2M

(√
N(λ∗)
n

+
2
√
κ√

λ∗n

)
log

6

γ

≤ 2M√
n
Dλ̃

− s
2∗
(
1 +

1

2D2

(
4D√
n
log

6

γ

)
λ̃

s−1
2∗
)
log

6

γ

≤ M

2
λ̃
μ+ 1

2∗
(
1 +

1

2D2
λ̃μ+s
∗

)
≤ 3

4
Mλ̃

μ+ 1
2∗ = δ(λ∗) , (31)

where we have used ED(s,D), (28) and the assumptions D ≥ 1 and λ̃∗ ≤ 1 , as well as the fact that
log 6γ−1 ≥ 1 . This ensures the first component of B(λ∗) is satisfied with probability 1− γ/3 . We
now turn to the second component. Inequality (17) along with a repetition of the above reasoning
yields that with probability 1− γ/3 :∥∥∥(S + λ∗I)−

1
2 (Sn − S)

∥∥∥
HS

≤
√
κ

M
δ(λ∗) ,

so that ∥∥(S + λ∗I)−1(Sn − S)
∥∥ ≤

√
κ

M
λ
− 1

2∗ δ(λ∗) =
3

4
λ̃μ
∗ ≤ 3

4
.

Observe that
(S + λ∗I)(Sn + λ∗I)−1 =

(
(Sn − S)(S + λ∗I)−1 + I

)−1

and use the inequality
∥∥(I −A)−1

∥∥ =
∥∥∥∑k≥0A

k
∥∥∥ ≤ (1 − ‖A‖)−1 for ‖A‖ < 1 , to obtain that the

second component in B(λ∗) is satisfied with Λ := 2 (with probability 1− γ/3).
Finally, equation (18) implies that the third component in B(λ∗) is satisfied with probability

1− γ/3 , with

Δ := 4

√
log 6γ−1

n
. (32)

To conclude, by the union bound, the three components of event B(λ∗) are satisfied simultaneously
with probability larger than 1− γ . We assume for the rest of the proof that this event is satisfied.

The structure of the proof is now as follows: we aim at bounding the error of the estimator
using the inequality of Lemma 5.4. In this upper bound, the residue term is controlled by definition
of the stopping rule. The only and most difficult remaining quantity to control is then

∣∣p′m̂(0)
∣∣ .

Using Lemma 5.5 on the residue at iteration m̂ − 1 , and the definition of the stopping criterion,
will allow to upper bound

∣∣p′m̂−1(0)
∣∣ ; finally Lemma 5.6 allows to relate iterations m̂− 1 and m̂ .

We will assume m̂ ≥ 1 for the remainder of the proof and postpone to the end the (simpler)
case m̂ = 0 .

First step: upper bound on
∣∣p′m̂−1(0)

∣∣ .
By definition of the stopping rule, we have ‖T ∗

n(Tnfm̂−1 −Υ)‖ > (2 + τ)λ
1
2∗ δ(λ∗) . Now applying

19



this together with the upper bound of Lemma 5.5 and rearranging, we get

τλ
1
2∗ δ(λ∗) ≤ c(μ)

(∣∣p′m̂−1(0)
∣∣−(μ+1)

+ Zμ(λ∗)
∣∣p′m̂−1(0)

∣∣−1
)
κ−μ− 1

2 ρ+ 2
∣∣p′m̂−1(0)

∣∣− 1
2 δ(λ∗)

≤ c(μ)max
(∣∣p′m̂−1(0)

∣∣− 1
2 δ(λ∗), ρκ−μ− 1

2

∣∣p′m̂−1(0)
∣∣−(μ+1)

,

ρκ−μ− 1
2Zμ(λ∗)

∣∣p′m̂−1(0)
∣∣−1

)
.

We examine in succession the possibilities that the maximum in the above expression is attained
for each of the terms which comprise it. If the first term attains the maximum, this implies
|p′m̂−1(0)| ≤ c(μ)τ−2λ−1∗ . If the second term attains the maximum, this entails

c(μ)ρκ−μ− 1
2

∣∣p′m̂−1(0)
∣∣−(μ+1) ≥ τλ

1
2∗ δ(λ∗) ,

which using (30) yields
∣∣p′m̂−1(0)

∣∣ ≤ c(μ, τ)
( ρ
M

) 1
μ+1 λ−1∗ . Finally, if the third term attains the

maximum, we have

c(μ)ρZμ(λ∗)κ−μ− 1
2

∣∣p′m̂−1(0)
∣∣−1 ≥ τλ

1
2∗ δ(λ∗) ,

which using (30) yields
∣∣p′m̂−1(0)

∣∣ ≤ c(μ, τ) ρ
M λ−μ−1

∗ Zμ(λ∗) . We now establish the inequality

Zμ(λ∗)λ−μ
∗ ≤ 1 . (33)

The inequality is trivial if μ ≤ 1 given the definition of Zμ(λ∗) in (22). If μ > 1 holds, from the

definition (32), it holds that Δ ≤ λ̃
2μ+s+1

2∗ (using D ≥ 1 , log 6γ−1 ≥ 1); hence

Zμ(λ∗)λ−μ
∗ = Δλ̃−μ

∗ ≤ λ̃
s+1
2∗ ≤ 1 .

Gathering all three cases, we obtain that it always holds that∣∣p′m̂−1(0)
∣∣ ≤ c(μ, τ)max

( ρ

M
, 1
)
λ−1
∗ . (34)

Second step: upper bound on
∣∣p′m̂(0)

∣∣ . For this we use the result of the first step and
relate

∣∣p′m̂−1(0)
∣∣ to ∣∣p′m̂(0)

∣∣ using property (21) of orthogonal polynomials, which we recall here for
convenience: ∣∣pm−1

′(0)− pm
′(0)

∣∣ ≤ [pm−1, pm−1](0)[
p
(2)
m−1, p

(2)
m−1

]
(1)

. (35)

To upper bound the above quantity, we apply Lemma 5.6 with the choice λ = λ∗ and

ε = ε0 := a0(μ, τ)min

(
M

ρ
, 1

)
λ∗ ,

where 0 < a0(μ, τ) ≤ 1 will be chosen small enough in order to satisfy some constraints to be
specified below. (We must insist here for the consistency of the argument that contrarily to the
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notation c(. . .) , the notation a0(μ, τ) denotes a fixed value that does not change throughout the
proof.) The first constraint is the requirement ε0 ∈ (0, x1,m−1) in order to apply Lemma 5.6. For
this, it can be seen from (34) that a0(μ, τ) can be chosen small enough (namely smaller than the
inverse of the constant c(μ, τ) of equation (34)) , to ensure

ε0 ≤
∣∣p′m−1(0)

∣∣−1 ≤ x1,m−1 ,

the second inequality above is an easy consequence of the fact that pm−1 is convex on [0, x1,m−1]
and pm−1(0) = 1 . We can now apply Lemma 5.6 and use inequality (27). We turn to upper bound
the following quantity appearing on the RHS of (27):

Λ(ε0 + λ∗)
1
2 δ(λ∗) + c(μ)Λ2ε0 (ε

μ
0 + Zμ(λ∗))κ−μ− 1

2 ρ

≤ 2(a0(μ, τ) + 1)
1
2λ

1
2∗ δ(λ∗) + c(μ)a0(μ, τ)min (ρ,M)λ

1
2∗ λ̃

μ+ 1
2∗

≤ (c(μ)a0(μ, τ) + 2)λ
1
2∗ δ(λ∗) ,

(36)

where we have used Λ = 2 , the definition (30) for δ(λ∗) and inequality Zμ(λ∗) ≤ λμ
∗ , see (33) .

Now, we can choose a0(μ, τ) small enough so that in addition to the previous constraint, the factor
in the last display satisfies c(μ)a0(μ, τ) ≤ τ

2 . The definition of the stopping rule entails

[pm−1, pm−1]
1
2

(0) = ‖T ∗
n(Tnfm̂−1 −Υ)‖ > (2 + τ)λ

1
2∗ δ(λ∗) . (37)

Now combining (27), (37) and (36), we obtain

[pm−1, pm−1]
1
2

(0) ≤ (2 + τ/2)λ
1
2∗ δ(λ∗) + ε

− 1
2

0

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)

≤ 2 + τ/2

2 + τ
[pm−1, pm−1]

1
2

(0) + ε
− 1

2
0

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)
,

so that (
2 + 4τ−1

)−1
[pm−1, pm−1]

1
2

(0) ≤ ε
− 1

2
0

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)
;

using this inequality in relation with (35) and (34), we obtain∣∣p′m̂(0)
∣∣ ≤ ∣∣p′m̂−1(0)

∣∣+ c(τ)ε−1
0 ≤ c(μ, τ)max

( ρ

M
, 1
)
λ−1
∗ . (38)

Final step. We want to apply the main error bound of Lemma 5.4 with λ = λ∗ and ε =

ε∗ = a(μ, τ)min
(
M
ρ , 1

)
λ∗ . Note that ε∗ is different from ε0 considered above; in fact ε∗ must now

satisfy the constraint ε∗ ∈ (0, x1,m) in order to be able to apply the lemma. In view of (38), we
can choose a(μ, τ) ∈ (0, 1] small enough so as to ensure

ε∗ ≤
∣∣p′m(0)

∣∣−1 ≤ x1,m ,
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similarly to the previous step (but now at iteration m instead of m−1). Recall that in the notation
of Lemma 5.4, ε̃∗ = min(ε∗, |p′m(0)|−1) , so that with the above choice we have ε̃∗ = ε∗ . We now
apply Lemma 5.4, plug in the inequality (by definition of the stopping rule)

‖T ∗
n(Tnfm̂ −Υ)‖ ≤ (2 + τ)λ

1
2∗ δ(λ∗) ,

and obtain, using again (33):∥∥∥S 1
2
−θ(fm − f∗

H)
∥∥∥ ≤ c(μ, τ)

(
ε̃−1
∗ λ1−θ

∗ δ(λ∗) + λ
1
2
−θ+μ

∗ κ−μ− 1
2 ρ+ ε−1

∗ λ1−θ
∗ δ(λ∗)

)
≤ c(μ, τ)

(
max

( ρ

M
, 1
)
λ−θ
∗ δ(λ∗) + λ

1
2
−θ+μ

∗ κ−μ− 1
2 ρ

)
≤ c(μ, τ)max (ρ,M)λ−θ

∗ λ̃
μ+ 1

2∗

= c(μ, τ)max (ρ,M)κ−θ

(
4D√
n
log

6

γ

) 2μ+1−2θ
2μ+s+1

= c(μ, τ)max (ρ,M)κ−θ

(
4D√
n
log

6

γ

) 2(r−θ)
2r+s

.

If m̂ = 0 , we can apply directly Lemma 5.4 as above without requiring the two previous steps,
since in this case p′0(0) = 0 , so that we obtain the same final bound.

5.4 Proof of Theorem 3.2

In the case of the “outer” rates of convergence, i.e. condition SC(r, ρ) holds with r ∈ (0, 12) , we
recall that the target function f∗ is not representable as an element of the Hilbert space H . This
means many arguments used in Section 5.3 cannot be used directly. To alleviate this, we consider
an approximation of f∗ by a function belonging to H defined as

fλ
H := (Sn + λI)−1T ∗f∗ . (39)

Similarly to the previous proof, we define an event where the estimation error is controlled in an
appropriate sense:

B’(λ) :

⎧⎪⎪⎨⎪⎪⎩
∥∥∥(S + λI)−

1
2 (T ∗

nΥ− Tf∗)
∥∥∥ ≤ δ(λ) ,∥∥∥(S + λI)−

1
2 (Sn − S)

∥∥∥
HS

≤ δ̃(λ) ,∥∥(S + λI)(Sn + λI)−1
∥∥
HS

≤ Λ2,

Notice that the first part of the event is slightly different from the corresponding part of B(λ) ; this
is because we will be using concentration inequality (15) rather than (16), the latter only being
available for r ≥ 1

2 .
Our first lemma controls the approximation from Tfλ

H to the target f∗ .
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Lemma 5.7. Assume condition SC(r, ρ) holds, r < 1
2 . Let θ be fixed, θ ∈ [0, r) . For any λ > 0 ,

if the event B’(λ) is satisfied, then∥∥∥K−θ(Tfλ
H − f∗)

∥∥∥ ≤ κ−rρλr−θ
(
1 + Λ2λ− 1

2 δ̃(λ)
)
,

where fλ
H is defined in (39) .

Proof. We first write∥∥∥K−θ(Tfλ
H − f∗)

∥∥∥ ≤
∥∥∥K−θT ((Sn + λ)−1 − (S + λ)−1)T ∗f∗

∥∥∥+
∥∥∥K−θ(T (S + λ)−1T ∗ − I)f∗

∥∥∥
We focus on the second term first:∥∥∥K−θ(T (S + λI)−1T ∗ − I)f∗

∥∥∥ =
∥∥∥K−θ(K(K + λI)−1 − I)Kru

∥∥∥
≤ κ−rρλ sup

t∈[0,κ]

tr−θ

t+ λ

≤ κ−rρλr−θ ,

where at the last line we used Lemma 5.11 and the assumption that r ∈ (0, 12) and θ ∈ (0, r) so
that r − θ ∈ (0, 12) .

For the first term, we use the second component of B’(λ) :∥∥∥K−θT ((Sn + λI)−1 − (S + λI)−1)T ∗f∗
∥∥∥

=
∥∥∥(K− 1

2T )S
1
2
−θ(S + λI)−1(S − Sn)(Sn + λI)−1T ∗Kru

∥∥∥
≤
∥∥∥S 1

2
−θ(S + λI)−

1
2

∥∥∥ ∥∥∥(S + λI)−
1
2 (S − Sn)

∥∥∥ ∥∥(Sn + λI)−1T ∗f∗∥∥
≤ Λ2κ−rρλr−θ− 1

2 δ̃(λ) ;

for the last inequality, we bounded the last factor by∥∥(Sn + λI)−1T ∗f∗∥∥ ≤ ∥∥(Sn + λI)−1(S + λI)
∥∥ ∥∥(S + λI)−1T ∗Kru

∥∥
≤ Λ2

∥∥∥(S + λI)−1Sr+ 1
2 (S− 1

2T )u
∥∥∥

≤ Λ2κ−rρ sup
t∈[0,κ]

tr+
1
2

t+ λ

≤ Λ2κ−rρλr− 1
2 , (40)

where we have used Lemma 5.11 again (since r+ 1
2 < 1) . Collecting the terms yields the conclusion.
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Lemma 5.8 (Bounding the error, outer case). Assume condition SC(r, ρ) holds, r < 1
2 . For any

λ > 0 , if the event B’(λ) is satisfied, then for any θ ∈ [0, r) , for any iteration step 1 ≤ m ≤ nΥ ,
for any ε ∈ (0, x1,m) , and denoting ε̃ := min(ε, |p′m(0)|−1) :∥∥∥K−θ(Tfm − f∗)

∥∥∥ ≤c(Λ)

(
ε−1 (ε+ λ)

1
2
−θ ‖T ∗

n(Tnfm −Υ)‖+ ε̃−1 (λ+ ε̃)1−θ δ(λ)

+ κ−rρ (λ+ ε)r−θ (1 + λ− 1
2 δ̃(λ) + ε̃−1λ

))
For m = 0 , the above inequality is valid for any ε > 0 .

Proof. We begin with∥∥∥K−θ(Tfm − f∗)
∥∥∥ ≤

∥∥∥K−θT (fm − fλ
H)
∥∥∥+

∥∥∥K−θ(Tfλ
H − f∗)

∥∥∥
and the second term is dealt with by Lemma 5.7. For the first term, we will follow the proof of
Lemma 5.4 with appropriate changes. Set f̃m = qm(Sn)T

∗f∗ . We have∥∥∥K−θT (fm − fλ
H)
∥∥∥ =

∥∥∥S 1
2
−θ(fm − fλ

H)
∥∥∥

≤ Λ1−2θ
∥∥∥(Sn + λI)

1
2
−θ(fm − fλ

H)
∥∥∥

≤ Λ
(∥∥∥Fε(Sn + λI)

1
2
−θ(fm − f̃m)

∥∥∥+
∥∥∥Fε(Sn + λI)

1
2
−θ(f̃m − fλ

H)
∥∥∥

+
∥∥∥F⊥

ε (Sn + λI)
1
2
−θ(fm − fλ

H)
∥∥∥)

:= Λ((I) + (II) + (III)) ,

We upper bound the first summand, using the first component of event B’(λ):

(I) =
∥∥∥Fε(Sn + λI)

1
2
−θqm(Sn)(T

∗
nΥ− T ∗f∗)

∥∥∥
≤ Λ

∥∥∥Fε(Sn + λI)1−θqm(Sn)
∥∥∥ ∥∥∥(S + λI)−

1
2 (T ∗

nΥ− T ∗f∗)
∥∥∥

≤ 2Λδ(λ)
∣∣p′m(0)

∣∣ (λ+
∣∣p′m(0)

∣∣−1
)1−θ

;

the above calculation is almost identical to the handling of term (I) in the proof of Lemma 5.4, and
we refer to that proof for the details. We turn to the second term:

(II) =
∥∥∥Fε(Sn + λI)

1
2
−θ(f̃m − fλ

H)
∥∥∥ =

∥∥∥Fε(Sn + λI)
1
2
−θ(qm(Sn)(Sn + λI)− I)(Sn + λI)−1T ∗Kru

∥∥∥
≤
∥∥∥Fε(Sn + λI)−θ− 1

2 (pm(Sn) + λqm(Sn))S
r+ 1

2

∥∥∥ ∥∥∥S− 1
2T ∗u

∥∥∥
≤ Λ2κ−rρ sup

t∈[0,ε]
(|pm(t)|+ λ |qm(t)|) (t+ λ)r−θ

≤ Λ2κ−rρ
(
(ε+ λ)r−θ + λ1+r−θ

∣∣p′m(0)
∣∣+ λ

∣∣p′m(0)
∣∣1+θ−r

)
≤ c(Λ)κ−rρ(ε̃+ λ)r−θ

(
1 + ε̃−1λ

)
,
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where for the penultimate inequality, we used the same arguments as in the proof of Lemma 5.4
to bound the quantities involving |pm(x)| and |qm(x)| on the interval [0, ε] ⊂ [0, x1,m] . We finally
consider the third term; we recall that we can write F⊥

ε = F⊥
ε S−1

n Sn and

(III) =
∥∥∥F⊥

ε (Sn + λI)
1
2
−θ(fm − fλ

H)
∥∥∥ ≤

∥∥∥F⊥
ε (Sn + λI)1−θS−1

n

∥∥∥ ∥∥∥F⊥
ε (Sn + λI)−

1
2Sn(fm − fλ

H)
∥∥∥

≤ (ε+ λ)1−θ

ε

(∥∥∥F⊥
ε (Sn + λI)−

1
2T ∗

n(Tnfm −Υ)
∥∥∥

+
∥∥∥(Sn + λI)−

1
2 (T ∗

nΥ− T ∗f∗)
∥∥∥

+
∥∥∥F⊥

ε (Sn + λI)−
1
2 (T ∗f∗ − Snf

λ
H)
∥∥∥)

≤ (ε+ λ)
1
2
−θ

ε
‖T ∗

n(Tnfm −Υ)‖+ (ε+ λ)1−θ

ε
δ(λ) + (IV ) ,

with

(IV ) := ε−1(ε+ λ)1−θ
∥∥∥F⊥

ε (Sn + λI)−
1
2 (T ∗f∗ − Snf

λ
H)
∥∥∥ = λε−1(ε+ λ)1−θ

∥∥∥F⊥
ε (Sn + λI)−

3
2T ∗f∗

∥∥∥
≤ λε−1(ε+ λ)

1
2
−θ

∥∥(Sn + λI)−1T ∗f∗∥∥
≤ Λ2κ−rρε−1(ε+ λ)

1
2
−θλr+ 1

2

≤ Λ2κ−rρ(ε+ λ)r−θ(1 + ε−1λ) ,

where we have reused inequality (40) at the second to last line. Gathering the different terms now
yields the announced inequality.

Lemma 5.9 (Bounding the residue, outer case). Assume condition SC(r, ρ) holds, r < 1
2 . Let

λ > 0 be fixed and assume event B(λ) holds. Then for any iteration step 1 ≤ m ≤ nΥ :

‖T ∗
n(Tnfm −Υ)‖ ≤Λ2

(
2
∣∣p′m(0)

∣∣−(r+ 1
2
)
+ λr+ 1

2

)
κ−rρ+ Λ

(∣∣p′m(0)
∣∣− 1

2 + λ
1
2

)
δ(λ) . (41)

Proof. The proof is similar to that of Lemma 5.5 up to the fact that we use T ∗f∗ instead of Snf
∗
H ,

so that we skip some details. The main inequality becomes

‖T ∗
n(Tnfm −Υ)‖ ≤ ∥∥Fx1,mϕm(Sn)T

∗f∗∥∥+
∥∥Fx1,mϕm(Sn)(T

∗
nΥ− T ∗f∗)

∥∥ := (I) + (II),

where we used (19) of Lemma 5.2 and the notation therein. The second term is controlled exactly
as in the proof of Lemma 5.5, only we use the first component of B’(λ) instead of that of B(λ). It
gives rise to

(II) ≤
(∣∣p′m(0)

∣∣− 1
2 + λ

1
2

)
Λδ(λ) .
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For the first term, we use assumption SC(r, ρ), then (25) with r < 1
2 :

(I) =
∥∥Fx1,mϕm(Sn)T

∗f∗∥∥ =
∥∥∥Fx1,mϕm(Sn)S

r+ 1
2 (S− 1

2T ∗)u
∥∥∥

≤ Λ2

(
sup

t∈[0,x1,m]
tr+

1
2ϕm(t) + λr+ 1

2 sup
t∈[0,x1,m]

ϕm(t)

)
κ−rρ

≤ Λ2
(
2
∣∣p′m(0)

∣∣−(r+ 1
2
)
+ λr+ 1

2

)
κ−rρ ,

where for the last inequality we applied (20) with ν = 2r + 1 ≤ 2 , ν = 0 .

Finally, the following lemma is the counterpart of Lemma 5.6 in the outer case:

Lemma 5.10. Assume condition SC(r, ρ) holds, r < 1
2 . For any λ > 0 , if the event B(λ) is

satisfied, then for any iteration step 1 ≤ m ≤ nΥ , and any ε ∈ (0, x1,m−1) :

[pm−1, pm−1]
1
2

(0) = ‖pm−1(Sn)T
∗
nΥ‖

≤ Λ(ε+ λ)
1
2 δ(λ) + Λ2

(
εr+

1
2 + λr+ 1

2

)
κ−rρ+ ε−

1
2

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)
. (42)

Proof. The first step of the proof is unchanged with respect to that of Lemma 5.6, and we refer to
it for the details:

‖pm−1(Sn)T
∗
nΥ‖ ≤ ‖FεT

∗
nΥ‖+ ε−

1
2

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)
.

Then we follow again the proof of Lemma 5.6, but using T ∗f∗ in place of Snf
∗
H :

‖FεT
∗
nΥ‖ ≤ ‖Fε(T

∗
nΥ− T ∗f∗)‖+ ‖FεT

∗f∗‖ ≤ Λ(ε+ λ)
1
2 δ(λ) +

∥∥∥FεS
r+ 1

2 (S− 1
2T ∗)u

∥∥∥
≤ Λ(ε+ λ)

1
2 δ(λ) + Λ2

(
εr+

1
2 + λr+ 1

2

)
κ−rρ,

where we have used (25) (with r < 1
2) for the last line.

We provide for completeness the following simple lemma, which was used a couple of times:

Lemma 5.11. Let λ > 0 and ν ∈ [0, 1] be fixed. Then

sup
t∈R+

tν

t+ λ
= C(ν)λν−1,

with C(ν) = νν(1− ν)(1−ν) ∈ [12 , 1] if ν ∈ (0, 1) , and C(0) = 1 , C(1) = 1 .

Proof. If ν ∈ (0, 1) , the derivative of the function is equal to tν−1((ν − 1)t + νλ)/(t + λ2) . The
value t∗ := νλ/(1− ν) is the position of the unique maximum on R+ , giving rise to the result. The
special cases ν = 0, 1 are treated easily. Alternatively, the upper bound resulting from C(ν) ≤ 1
can be obtained more directly by using the inequality (t+ λ) ≥ tνλ1−ν .
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Proof of Theorem 3.2
We fix the following values for λ∗, λ̃∗ similarly to the inner rate case:

λ̃∗ =
(
4D√
n
log

4

γ

) 2
2r+s

, and λ∗ := κλ̃∗ , (43)

satisfying λ̃∗ ≤ 1 because of assumption (12) . The discrepancy stopping rule in the outer case can
be rewritten as follows: for some fixed τ > 0 ,

m̂ := min

{
m ≥ 0 : ‖T ∗

n(Tnfm −Υ)‖ ≤ (8 + τ)max
(
1,

ρ

M

)
λ

1
2∗ δ(λ∗)

}
, (44)

where

δ(λ∗) :=
3

4
Mλ̃r

∗ . (45)

(Observe that τ ′ > 6 from (11) and τ ′ > 0 in (44) are related via τ = 4
3(τ

′ − 6) .)
We check that event B’(λ∗), is satisfied with large probability. To check the first component,

we use (15) instead of (16). Since the easily checked relation T ∗
ñΥ = T ∗

nΥ holds, we have with
probability 1− γ/2 ,∥∥∥(S + λ∗I)−

1
2 (T ∗

ñΥ− T ∗f∗)
∥∥∥ =

∥∥∥(S + λ∗I)−
1
2 (T ∗

nΥ− T ∗f∗)
∥∥∥ ≤ 3

4
Mλ̃

μ+ 1
2∗ = δ(λ∗) , (46)

where this inequality follows from identical steps as for (31), to which we refer for details (remember
the notation μ = r − 1

2 , there). It is worth noting that in order for the argument leading to (31)
to be valid, we need to use the assumption r + s ≥ 1

2 . This ensures the first component of B’(λ∗)
is satisfied with probability 1 − γ/2 . We now turn to the second component. We can apply the
deviation inequality (17) but with n replaced by ñ , since we make use of all the unlabeled data.

Using the fact that n
ñ ≤ n− 1−2r

2r+s ≤ λ̃1−2r∗ , we obtain that with probability 1− γ/2 :

∥∥∥(S + λ∗I)−
1
2 (Sñ − S)

∥∥∥
HS

≤ 2
√
κ

(√
N(λ∗)
ñ

+
2
√
κ√

λ∗ñ

)
log

4

γ

≤
√
κ

2

(
4D√
n
log

4

γ

)(
λ̃
− s

2
+ 1

2
−r

∗ +
1

2D2

(
4D√
n
log

4

γ

)
λ̃

1
2
−2r

∗
)

≤
√
κ

2
λ̃

1
2∗
(
1 +

1

2
λ̃s
∗

)
≤ 3

4

√
κλ̃

1
2∗ =: δ̃(λ∗) ,

so that the second component of B’(λ∗) is satisfied with the above value for δ̃(λ) ; moreover∥∥(S + λ∗I)−1(Sn − S)
∥∥ ≤ λ

− 1
2∗ δ̃(λ∗) =

3

4
,

implying (by the same argument as in the proof of Theorem 3.1) that the third compoment of
B’(λ∗) is satisfied with Λ := 2 . We can observe in passing that obtaining the above inequality was
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the technical reason for introducing the additional unlabeled data in the outer case, since using
the labeled data alone would not have granted it for this choice of λ∗ . Summarizing, the three
components of event B’(λ∗) are satisfied simultaneously with probability larger than 1 − γ . We
assume for the rest of the proof that this event is satisfied.

We assume m̂ ≥ 1 for the remainder of the proof and postpone to the end the (simpler) case
m̂ = 0 .

First step: upper bound on
∣∣p′m̂−1(0)

∣∣ .
By definition of the stopping rule, we have ‖T ∗

n(Tnfm̂−1 −Υ)‖ > (8 + τ)max(1, ρ
M )λ

1
2∗ δ(λ∗) . Ap-

plying this together with the upper bound of Lemma 5.9, observing that (43) entails Λ2λ
r+ 1

2∗ κ−rρ ≤
6ρλ

1
2∗ δ(λ∗) , and rearranging, we get

max(1,
ρ

M
)τλ

1
2∗ δ(λ∗) ≤ 8

∣∣p′m̂−1(0)
∣∣−(r+ 1

2
)
κ−rρ+ 2

∣∣p′m̂−1(0)
∣∣− 1

2 δ(λ∗)

≤ 10max
(∣∣p′m̂−1(0)

∣∣− 1
2 δ(λ∗),

∣∣p′m̂−1(0)
∣∣−(r+ 1

2
)
κ−rρ

)
If the maximum on the RHS is attained for the first term, this implies
|p′m̂−1(0)| ≤ 4min(1, Mρ )τ−2λ−1∗ . If the second term attains the maximum, this entails via (45)

10ρκ−r
∣∣p′m̂−1(0)

∣∣−(r+ 1
2
) ≥ τ max(1,

ρ

M
)λ

1
2∗ δ(λ∗) =

3

4
τ max(M,ρ)κ−rλ

r+ 1
2∗ ,

so that ∣∣p′m̂−1(0)
∣∣ ≤ c(r, τ)min(1,

ρ

M
)

1

r+1
2 λ−1

∗ .

Gathering the two cases, we obtain that it always holds that∣∣p′m̂−1(0)
∣∣ ≤ c(r, τ)λ−1

∗ . (47)

Second step: upper bound on
∣∣p′m̂(0)

∣∣ . Apply Lemma 5.10 with the choice λ = λ∗ and

ε = ε0 := a0(r, τ)λ∗ ,

where 0 < a0(r, τ) ≤ 1 will be chosen small enough in order to satisfy some constraints to be
specified. The first constraint is the requirement ε0 ∈ (0, x1,m−1) in order to apply Lemma 5.10.
For this, it can be seen from (47) that a0(r, τ) can be chosen small enough to ensure

ε0 ≤
∣∣p′m−1(0)

∣∣−1 ≤ x1,m−1 .

We can now apply Lemma 5.10. We upper bound the following quantity appearing on the RHS of
(42):

Λ(ε0 + λ∗)
1
2 δ(λ∗) + Λ2

(
ε
r+ 1

2
0 + λ

r+ 1
2∗
)
κ−rρ ≤ 2(a0(r, τ) + 1)λ

1
2∗ δ(λ∗) + 4(a0(r, τ)

r+ 1
2 + 1)λ

1
2∗ λ̃r

∗ρ

≤ (8 + 8a0(r, τ)
1
2 )max(1,

ρ

M
)λ

1
2∗ δ(λ∗) , (48)
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We can choose a0(r, τ) small enough so that in addition to the previous constraint, it satisfies

a0(μ, τ)
1
2 ≤ τ

16 . Remember that the definition of the stopping rule entails

[pm−1, pm−1]
1
2

(0) = ‖T ∗
n(Tnfm̂−1 −Υ)‖ > (8 + τ)max(1,

ρ

M
)λ

1
2∗ δ(λ∗) . (49)

Combining (42), (49) and (48), we obtain

[pm−1, pm−1]
1
2

(0) ≤ (8 + τ/2)max(1,
ρ

M
)λ

1
2∗ δ(λ∗) + ε

− 1
2

0

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)

≤ 8 + τ/2

8 + τ
[pm−1, pm−1]

1
2

(0) + ε
− 1

2
0

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)

so that (
2 + 16τ−1

)−1
[pm−1, pm−1]

1
2

(0) ≤ ε
− 1

2
0

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)
;

using this inequality in relation with (21) and (47), we obtain∣∣p′m̂(0)
∣∣ ≤ ∣∣p′m̂−1(0)

∣∣+ c(τ)ε−1
0 ≤ c(r, τ)λ−1

∗ . (50)

Final step. We want to apply the main error bound of Lemma 5.4 with λ = λ∗ and ε = ε∗ =
a(r, τ)λ∗ . In view of (50), we can choose a(μ, τ) ∈ (0, 1] small enough so that to ensure

ε∗ ≤
∣∣p′m(0)

∣∣−1 ≤ x1,m .

Recall that in the notation of Lemma 5.8, ε̃∗ = min(ε∗, |p′m(0)|−1) , so that with the above choice
we have ε̃∗ = ε∗ . We now apply Lemma 5.8, plug in the inequality (by definition of the stopping
rule)

‖T ∗
n(Tnfm̂ −Υ)‖ ≤ (8 + τ)max(1,

ρ

M
)λ

1
2∗ δ(λ∗) ,

to obtain:∥∥∥K−θ(fm̂ − f∗)
∥∥∥ ≤c(r, τ)

(
ε−1
∗ (ε∗ + λ∗)

1
2
−θ max(1,

ρ

M
)λ

1
2∗ δ(λ∗) + ε̃−1

∗ (λ∗ + ε̃∗)1−θ δ(λ∗)

+ κ−rρ (λ∗ + ε∗)r−θ (1 + λ
− 1

2∗ δ̃(λ) + ε̃−1
∗ λ∗

))
≤ c(r, τ)max(ρ,M)κ−θλr−θ

∗

= c(r, τ)max (ρ,M)κ−θ

(
4D√
n
log

4

γ

) 2(r−θ)
2r+s

.

If m̂ = 0 , we can apply directly Lemma 5.8 as above without requiring the two previous steps,
since in this case p′0(0) = 0 , so that we obtain the same final bound.
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