• Treffer 1 von 3
Zurück zur Trefferliste

Trends in Compound Flooding in Northwestern Europe During 1901-2014

  • We analyze trends in compound flooding resulting from high coastal water levels (HCWLs) and peak river discharge over northwestern Europe during 1901-2014. Compound peak discharge associated with 37 stream gauges with at least 70 years of record availability near the North and Baltic Sea coasts is used. Compound flooding is assessed using a newly developed index, compound hazard ratio, that compares the severity of river flooding associated with HCWL with the at-site, T-year (a flood with 1/T chance of being exceeded in any given year) fluvial peak discharge. Our findings suggest a spatially coherent pattern in the dependence between HCWL and river peaks and in compound flood magnitudes and frequency. For higher return levels, we find upward trends in compound hazard ratio frequency at midlatitudes (gauges from 47 degrees N to 60 degrees N) and downward trends along the high latitude (>60 degrees N) regions of northwestern Europe. Plain Language Summary Compound floods in delta areas, that is, the co-occurrence of high coastal waterWe analyze trends in compound flooding resulting from high coastal water levels (HCWLs) and peak river discharge over northwestern Europe during 1901-2014. Compound peak discharge associated with 37 stream gauges with at least 70 years of record availability near the North and Baltic Sea coasts is used. Compound flooding is assessed using a newly developed index, compound hazard ratio, that compares the severity of river flooding associated with HCWL with the at-site, T-year (a flood with 1/T chance of being exceeded in any given year) fluvial peak discharge. Our findings suggest a spatially coherent pattern in the dependence between HCWL and river peaks and in compound flood magnitudes and frequency. For higher return levels, we find upward trends in compound hazard ratio frequency at midlatitudes (gauges from 47 degrees N to 60 degrees N) and downward trends along the high latitude (>60 degrees N) regions of northwestern Europe. Plain Language Summary Compound floods in delta areas, that is, the co-occurrence of high coastal water levels (HCWLs) and high river discharge, are a particular challenge for disaster management. Such events are caused by two distinct mechanisms: (1) HCWLs may affect river flows and water levels by backwater effects or by reversing the seaward flow of rivers, particularly in regions with elevation less than 10 m in northwestern Europe. (2) The correlation between HCWL and river flow peaks may also stem from a common meteorological driver. Severe storm periods may be associated with high winds leading to storm surges, and at the same time with high precipitation followed by inland flooding. Understanding the historical trends in compound flooding, owing to changes in relative sea levels, in river flooding and in the dependence between these two drivers, is essential for projecting future changes and disaster management. The risk assessment frameworks are often limited to assessing flood risk from a single driver only. We present a new approach to assess compound flood severity resulting from extreme coastal water level and peak river discharge. We find upward trends in compound flooding for midlatitude regions and downward trends for high latitudes in northwestern Europe.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Poulomi GanguliORCiD, Bruno MerzORCiDGND
DOI:https://doi.org/10.1029/2019GL084220
ISSN:0094-8276
ISSN:1944-8007
Titel des übergeordneten Werks (Englisch):Geophysical research letters
Verlag:American Geophysical Union
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:12.09.2019
Erscheinungsjahr:2019
Datum der Freischaltung:26.10.2020
Freies Schlagwort / Tag:compound flood; dependence; northwestern Europe; risk modeling
Band:46
Ausgabe:19
Seitenanzahl:11
Erste Seite:10810
Letzte Seite:10820
Fördernde Institution:Alexander von Humboldt Foundation, GermanyAlexander von Humboldt Foundation; GFZ German Research Centre for Geosciences, Potsdam, Germany
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Publikationsweg:Open Access
Open Access / Hybrid Open-Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.