• Treffer 4 von 4
Zurück zur Trefferliste

Infrared spectroscopy flucidates the inhibitor binding sites in a metal-dependent formate dehydrogenase

  • Biological carbon dioxide (CO2) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO2 at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO2 and charged as formate. We employed infrared (IR) spectroscopy in combination with density functional theory (DFT) and inhibition kinetics. One distinct inhibitory molecule was found to bind to either a non-competitive or a competitive binding site in the secondary coordination sphere of the active site. Site-directed mutagenesis of key amino acid residues in the vicinity of the bis-MGD cofactor revealed changes in both non-competitive and competitive binding, whereby the inhibitor is in case of the latterBiological carbon dioxide (CO2) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO2 at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO2 and charged as formate. We employed infrared (IR) spectroscopy in combination with density functional theory (DFT) and inhibition kinetics. One distinct inhibitory molecule was found to bind to either a non-competitive or a competitive binding site in the secondary coordination sphere of the active site. Site-directed mutagenesis of key amino acid residues in the vicinity of the bis-MGD cofactor revealed changes in both non-competitive and competitive binding, whereby the inhibitor is in case of the latter interaction presumably bound between the cofactor and the adjacent Arg587.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Konstantin LaunORCiD, Benjamin R. DuffusORCiD, Stefan WahlefeldORCiDGND, Sagie KatzORCiDGND, Dennis Heinz BelgerORCiDGND, Peter HildebrandtORCiD, Maria Andrea MroginskiORCiDGND, Silke LeimkühlerORCiDGND, Ingo ZebgerORCiDGND
DOI:https://doi.org/10.1002/chem.202201091
ISSN:0947-6539
ISSN:1521-3765
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/35662280
Titel des übergeordneten Werks (Englisch):Chemistry - a European journal
Verlag:Wiley-VCH
Verlagsort:Weinheim
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:05.06.2022
Erscheinungsjahr:2022
Datum der Freischaltung:16.02.2024
Freies Schlagwort / Tag:CO2 reduction; DFT; IR; formate oxidation; inhibition kinetics; molybdoenzyme; spectroscopy
Aufsatznummer:e202201091
Seitenanzahl:8
Fördernde Institution:DFG [EXC 2008/1-390540038]; Einstein Foundation Berlin (Einstein Center; of Catalysis); BIG-NSE; EU [810856]; Projekt DEAL
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.