• search hit 2 of 20
Back to Result List

PG 1610+062: a runaway B star challenging classical ejection mechanisms

  • Hypervelocity stars are rare objects, mostly main-sequence (MS) B stars, traveling so fast that they will eventually escape from the Milky Way. Recently, it has been shown that the popular Hills mechanism, in which a binary system is disrupted via a close encounter with the supermassive black hole at the Galactic center, may not be their only ejection mechanism. The analyses of Gaia data ruled out a Galactic center origin for some of them, and instead indicated that they are extreme disk runaway stars ejected at velocities exceeding the predicted limits of classical scenarios (dynamical ejection from star clusters or binary supernova ejection). We present the discovery of a new extreme disk runaway star, PG 1610+062, which is a slowly pulsating B star bright enough to be studied in detail. A quantitative analysis of spectra taken with ESI at the Keck Observatory revealed that PG 1610+062 is a late B-type MS star of 4–5 M⊙ with low projected rotational velocity. Abundances (C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe) were derivedHypervelocity stars are rare objects, mostly main-sequence (MS) B stars, traveling so fast that they will eventually escape from the Milky Way. Recently, it has been shown that the popular Hills mechanism, in which a binary system is disrupted via a close encounter with the supermassive black hole at the Galactic center, may not be their only ejection mechanism. The analyses of Gaia data ruled out a Galactic center origin for some of them, and instead indicated that they are extreme disk runaway stars ejected at velocities exceeding the predicted limits of classical scenarios (dynamical ejection from star clusters or binary supernova ejection). We present the discovery of a new extreme disk runaway star, PG 1610+062, which is a slowly pulsating B star bright enough to be studied in detail. A quantitative analysis of spectra taken with ESI at the Keck Observatory revealed that PG 1610+062 is a late B-type MS star of 4–5 M⊙ with low projected rotational velocity. Abundances (C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe) were derived differentially with respect to the normal B star HD 137366 and indicate that PG 1610+062 is somewhat metal rich. A kinematic analysis, based on our spectrophotometric distance (17.3 kpc) and on proper motions from Gaia’s second data release, shows that PG 1610+062 was probably ejected from the Carina-Sagittarius spiral arm at a velocity of 550 ± 40 km s−1, which is beyond the classical limits. Accordingly, the star is in the top five of the most extreme MS disk runaway stars and is only the second among the five for which the chemical composition is known.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Andreas IrrgangORCiD, Stephan Alfred GeierORCiDGND, Ulrich HeberORCiDGND, Thomas KupferORCiD, F. Fürst
DOI:https://doi.org/10.1051/0004-6361/201935429
ISSN:1432-0746
Title of parent work (English):Astronomy and astrophysics : an international weekly journal
Publisher:EDP Sciences
Place of publishing:Les Ulis
Publication type:Article
Language:English
Date of first publication:2019/07/10
Publication year:2019
Release date:2020/12/02
Tag:stars: abundances; stars: early-type; stars: individual: HD 137366; stars: individual: PG 1610+062; stars: kinematics and dynamics
Volume:628
Number of pages:17
Funding institution:La Silla Paranal Observatory [091.C-0713(A)]; Alfred P. Sloan FoundationAlfred P. Sloan Foundation; U.S. Department of Energy Office of ScienceUnited States Department of Energy (DOE); Center for High-Performance Computing at the University of Utah; NASANational Aeronautics & Space Administration (NASA) [NAS5-98034]; National Aeronautics and Space AdministrationNational Aeronautics & Space Administration (NASA) [NNX08AR22G]; National Science FoundationNational Science Foundation (NSF) [AST-1238877]; National Aeronautics and Space AdministrationNational Aeronautics & Space Administration (NASA); National Science FoundationNational Science Foundation (NSF); W.M. Keck FoundationW.M. Keck Foundation; Brazilian Participation Group; Carnegie Institution for Science; Carnegie Mellon University; Chilean Participation Group; French Participation Group; Harvard-Smithsonian Center for AstrophysicsSmithsonian InstitutionHarvard-Smithsonian Center for Astrophysics; Instituto de Astrofisica de Canarias; Johns Hopkins UniversityJohns Hopkins University; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo; Lawrence Berkeley National LaboratoryUnited States Department of Energy (DOE); Leibniz Institut fur Astrophysik Potsdam (AIP); Max-Planck-Institut fur Astronomie (MPIA Heidelberg); Max-Planck-Institut fur Astrophysik (MPA Garching); Max-Planck-Institut fur Extraterrestrische Physik (MPE); National Astronomical Observatories of China; New Mexico State University; New York University; University of Notre Dame; Observatorio Nacional/MCTI; Ohio State UniversityOhio State University; Pennsylvania State University; Shanghai Astronomical Observatory; United Kingdom Participation Group; Universidad Nacional Autonoma de MexicoUniversidad Nacional Autonoma de Mexico; University of Arizona; University of Colorado Boulder; University of Oxford; University of Portsmouth; University of Utah; University of Virginia; University of WashingtonUniversity of Washington; University of Wisconsin; Vanderbilt University; Yale University
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Publishing method:Open Access / Bronze Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.