Bronze Open-Access
Refine
Year of publication
Document Type
- Article (308)
- Other (43)
- Working Paper (18)
- Review (8)
- Part of a Book (2)
- Part of Periodical (2)
- Monograph/Edited Volume (1)
- Conference Proceeding (1)
- Course Material (1)
- Report (1)
Keywords
- stars: massive (11)
- gamma rays: general (10)
- stars: winds, outflows (9)
- stars: early-type (8)
- ISM: supernova remnants (7)
- stars: atmospheres (7)
- stars: mass-loss (7)
- subdwarfs (7)
- X-rays: binaries (6)
- cosmic rays (6)
Institute
- Institut für Physik und Astronomie (107)
- Institut für Biochemie und Biologie (68)
- Institut für Geowissenschaften (35)
- Department Psychologie (22)
- Extern (18)
- Center for Economic Policy Analysis (CEPA) (17)
- Department Linguistik (15)
- Fachgruppe Volkswirtschaftslehre (13)
- Fachgruppe Betriebswirtschaftslehre (12)
- Institut für Mathematik (10)
How do social changes, new technologies or new management trends affect communication work? A team of researchers at Leipzig University and the University of Potsdam (Germany) observed new developments in related disciplines. As a result, the five most important trends for corporate communications are identified annually and published in the Communications Trend Radar. Thus, Communications managers can identify challenges and opportunities at an early stage, take a position, address issues and make decisions. For 2023, the Communications Trend Radar identifies five key trends for corporate communications: State Revival, Scarcity Management, Unimagination, Parallel Worlds, Augemented Workflows.
Some studies reveal that adolescents with intellectual disabilities and developmental disabilities are more likely to be victims of both face-to-face bullying and cyberbullying. Research also suggests that these adolescents are likely to witness bullying victimization. More research is needed to better understand the negative outcomes associated with their experiences. The purpose of this short-term longitudinal study was to investigate the buffering effect of parental social support on the associations of cyberbullying victimization and bystanding to subjective health complaints, suicidal ideation, and non-suicidal self-harm. Participants were 121 adolescents (63% male;Mage = 14.10 years) with intellectual disabilities and developmental disorders who completed questionnaires on their face-to-face and cyberbullying victimization and bystanding, parental social support, subjective health complaints, suicidal ideation, and non-suicidal self-harm during the 7th grade (Time 1). In 8th grade (Time 2), they completed questionnaires on subjective health complaints, suicidal ideation, and non-suicidal self-harm. The findings revealed that the positive associations between Time 1 cyberbullying victimization and Time 2 subjective health complaints, suicidal ideation, and non-suicidal self-harm were stronger at lower levels of Time 1 parental social support, while high levels of Time 1 parental social support diminished these relationships. Similar patterns were found for Time 1 cyberbullying bystanding and Time 2 subjective health complaints. Parental social support has a buffering effect on the relationships among cyberbullying victimization, bystanding, and health outcomes among adolescents with intellectual and developmental disorders.
Dissecting the tree of life
(2021)
Background
Anticancer compound 3-bromopyruvate (3-BrPA) suppresses cancer cell growth via targeting glycolytic and mitochondrial metabolism. The malignant peripheral nerve sheath tumor (MPNST), a very aggressive, therapy resistant, and Neurofibromatosis type 1 associated neoplasia, shows a high metabolic activity and affected patients may therefore benefit from 3-BrPA treatment. To elucidate the specific mode of action, we used a controlled cell model overexpressing proteasome activator (PA) 28, subsequently leading to p53 inactivation and oncogenic transformation and therefore reproducing an important pathway in MPNST and overall tumor pathogenesis.
Methods
Viability of MPNST cell lines S462, NSF1, and T265 in response to increasing doses (0-120 mu M) of 3-BrPA was analyzed by CellTiter-Blue (R) assay. Additionally, we investigated viability, reactive oxygen species (ROS) production (dihydroethidium assay), nicotinamide adenine dinucleotide dehydrogenase activity (NADH-TR assay) and lactate production (lactate assay) in mouse B8 fibroblasts overexpressing PA28 in response to 3-BrPA application. For all experiments normal and nutrient deficient conditions were tested. MPNST cell lines were furthermore characterized immunohistochemically for Ki67, p53, bcl2, bcl6, cyclin D1, and p21.
Results
MPNST significantly responded dose dependent to 3-BrPA application, whereby S462 cells were most responsive. Human control cells showed a reduced sensitivity. In PA28 overexpressing cancer cell model 3-BrPA application harmed mitochondrial NADH dehydrogenase activity mildly and significantly failed to inhibit lactate production. PA28 overexpression was associated with a functional glycolysis as well as a partial resistance to stress provoked by nutrient deprivation. 3-BrPA treatment was not associated with an increase of ROS. Starvation sensitized MPNST to treatment.
Conclusions
Aggressive MPNST cells are sensitive to 3-BrPA therapy in-vitro with and without starvation. In a PA28 overexpression cancer cell model leading to p53 inactivation, thereby reflecting a key molecular feature in human NF1 associated MPNST, known functions of 3-BrPA to block mitochondrial activity and glycolysis were reproduced, however oncogenic cells displayed a partial resistance. To conclude, 3-BrPA was sufficient to reduce NF1 associated MPNST viability potentially due inhibition of glycolysis which should lead to the initiation of further studies and promises a potential benefit for NF1 patients.
Background and objectives
AKI treated with dialysis initiation is a common complication of coronavirus disease 2019 (COVID-19) among hospitalized patients. However, dialysis supplies and personnel are often limited.
Design, setting, participants, & measurements
Using data from adult patients hospitalized with COVID-19 from five hospitals from theMount Sinai Health System who were admitted between March 10 and December 26, 2020, we developed and validated several models (logistic regression, Least Absolute Shrinkage and Selection Operator (LASSO), random forest, and eXtreme GradientBoosting [XGBoost; with and without imputation]) for predicting treatment with dialysis or death at various time horizons (1, 3, 5, and 7 days) after hospital admission. Patients admitted to theMount Sinai Hospital were used for internal validation, whereas the other hospitals formed part of the external validation cohort. Features included demographics, comorbidities, and laboratory and vital signs within 12 hours of hospital admission.
Results
A total of 6093 patients (2442 in training and 3651 in external validation) were included in the final cohort. Of the different modeling approaches used, XGBoost without imputation had the highest area under the receiver operating characteristic (AUROC) curve on internal validation (range of 0.93-0.98) and area under the precisionrecall curve (AUPRC; range of 0.78-0.82) for all time points. XGBoost without imputation also had the highest test parameters on external validation (AUROC range of 0.85-0.87, and AUPRC range of 0.27-0.54) across all time windows. XGBoost without imputation outperformed all models with higher precision and recall (mean difference in AUROC of 0.04; mean difference in AUPRC of 0.15). Features of creatinine, BUN, and red cell distribution width were major drivers of the model's prediction.
Conclusions
An XGBoost model without imputation for prediction of a composite outcome of either death or dialysis in patients positive for COVID-19 had the best performance, as compared with standard and other machine learning models.
Oxidized protein aggregates
(2020)
The study of protein aggregates has a long history. While in the first decades until the 80ies of the 20th century only the observation of the presence of such aggregates was reported, later the biochemistry of the formation and the biological effects of theses aggregates were described.
This review focusses on the complexity of the biological effects of protein aggregates and its potential role in the aging process.
In this study, a phosphorus recovery product, struvite palygorskite (S-PAL), obtained from nutrient-rich wastewater by using MgO modified palygorskite was applied for copper remediation in aqueous solution and contaminated soil to achieve waste recycling. The effects of contact time, initial pH, initial Cu(II) concentration and reaction temperature on Cu(II) adsorption in aqueous solution were intensively testified. Pseudo-second-order model was able to properly describe Cu(II) adsorption kinetics by using palygorskite (PAL) and S-PAL, and S-PAL exhibited higher adsorption amount (106.27 mg/g) than PAL (8.46 mg/g) at pH of 4. Cu(II) adsorption on PAL and S-PAL could be well fitted by Freundlich isotherm and Langmuir isotherm, respectively. The calculated thermodynamic parameters indicated that Cu(II) adsorption onto PAL and S-PAL were spontaneous and endothermic. A 28-day soil incubation experiment was conducted to evaluate the effects of PAL and S-PAL with three different rates (1%, 5% and 10% w/w) on Cu immobilization in contaminated soil. In the immobilization test, Cu extracted by 0.01 mol/L CaCl2 after seven days incubation significantly decreased with increasing rate of PAL and S-PAL. BCR sequential extraction results showed the significant decrease of acid soluble Cu and a concomitant increase of the residual fraction of Cu after S-PAL and PAL addition. XRD patterns of soil samples after treatment by PAL and S-PAL showed the formation of Cu0.6Mg1.3Si2O6 and Cu-3.04(PO4)(2)OH0.08 center dot 2H(2)O, which indicated that silanol groups and phosphate exhibited affinity for Cu in the soil.