The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 68
Back to Result List

Haplotype inference from unphased SNP data in heterozygous polyploids based on SAT

  • Background: Haplotype inference based on unphased SNP markers is an important task in population genetics. Although there are different approaches to the inference of haplotypes in diploid species, the existing software is not suitable for inferring haplotypes from unphased SNP data in polyploid species, such as the cultivated potato (Solanum tuberosum). Potato species are tetraploid and highly heterozygous. Results: Here we present the software SATlotyper which is able to handle polyploid and polyallelic data. SATlo-typer uses the Boolean satisfiability problem to formulate Haplotype Inference by Pure Parsimony. The software excludes existing haplotype inferences, thus allowing for calculation of alternative inferences. As it is not known which of the multiple haplotype inferences are best supported by the given unphased data set, we use a bootstrapping procedure that allows for scoring of alternative inferences. Finally, by means of the bootstrapping scores, it is possible to optimise the phased genotypes belonging to a givenBackground: Haplotype inference based on unphased SNP markers is an important task in population genetics. Although there are different approaches to the inference of haplotypes in diploid species, the existing software is not suitable for inferring haplotypes from unphased SNP data in polyploid species, such as the cultivated potato (Solanum tuberosum). Potato species are tetraploid and highly heterozygous. Results: Here we present the software SATlotyper which is able to handle polyploid and polyallelic data. SATlo-typer uses the Boolean satisfiability problem to formulate Haplotype Inference by Pure Parsimony. The software excludes existing haplotype inferences, thus allowing for calculation of alternative inferences. As it is not known which of the multiple haplotype inferences are best supported by the given unphased data set, we use a bootstrapping procedure that allows for scoring of alternative inferences. Finally, by means of the bootstrapping scores, it is possible to optimise the phased genotypes belonging to a given haplotype inference. The program is evaluated with simulated and experimental SNP data generated for heterozygous tetraploid populations of potato. We show that, instead of taking the first haplotype inference reported by the program, we can significantly improve the quality of the final result by applying additional methods that include scoring of the alternative haplotype inferences and genotype optimisation. For a sub-population of nineteen individuals, the predicted results computed by SATlotyper were directly compared with results obtained by experimental haplotype inference via sequencing of cloned amplicons. Prediction and experiment gave similar results regarding the inferred haplotypes and phased genotypes. Conclusion: Our results suggest that Haplotype Inference by Pure Parsimony can be solved efficiently by the SAT approach, even for data sets of unphased SNP from heterozygous polyploids. SATlotyper is freeware and is distributed as a Java JAR file. The software can be downloaded from the webpage of the GABI Primary Database at http://www.gabipd.org/projects/satlotyper/. The application of SATlotyper will provide haplotype information, which can be used in haplotype association mapping studies of polyploid plants.show moreshow less

Download full text files

  • pmnr883.pdfeng
    (2584KB)

    SHA-1: 9f9ca0e142b6357dcf83ee587be25ffb0bd1d983

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jost Neigenfind, Gabor Gyetvai, Rico Basekow, Svenja Diehl, Ute Achenbach, Christiane Gebhardt, Joachim SelbigGND, Birgit KerstenORCiD
URN:urn:nbn:de:kobv:517-opus4-435011
DOI:https://doi.org/10.25932/publishup-43501
ISSN:1866-8372
Title of parent work (German):Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (883)
Publication type:Postprint
Language:English
Date of first publication:2020/04/16
Publication year:2008
Publishing institution:Universität Potsdam
Release date:2020/04/16
Tag:Conjunctive Normal Form; Disjunctive Normal Form; Full Adder; Genotype Inference; Haplotype Inference; efficient; linkage disequilibrium; potato; pure parsimony; resistance; solanum
Issue:883
Number of pages:28
Source:BMC Genomics 9 (2008) 356 DOI: 10.1186/1471-2164-9-356
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Peer review:Referiert
Publishing method:Open Access
License (English):License LogoCreative Commons - Namensnennung 2.0 Generic
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.