
Mathematisch-Naturwissenschaftliche Fakultät

Jost Neigenfind | Gabor Gyetvai | Rico Basekow | Svenja Diehl |  
Ute Achenbach | Christiane Gebhardt | Joachim Selbig | Birgit Kersten

Haplotype inference from unphased  
SNP data in heterozygous polyploids 
based on SAT

Postprint archived at the Institutional Repository of the Potsdam University in:
Postprints der Universität Potsdam
Mathematisch-Naturwissenschaftliche Reihe ; 883
ISSN 1866-8372
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-435011
DOI https://doi.org/10.25932/publishup-43501

Suggested citation referring to the original publication:
BMC Genomics 9 (2008) 356 
DOI https://doi.org/10.1186/1471-2164-9-356
ISSN (online) 1471-2164



 



BioMed CentralBMC Genomics

ss
Open AcceSoftware
Haplotype inference from unphased SNP data in heterozygous 
polyploids based on SAT
Jost Neigenfind*1,2, Gabor Gyetvai3, Rico Basekow1,2, Svenja Diehl2, 
Ute Achenbach3, Christiane Gebhardt3, Joachim Selbig4 and Birgit Kersten*1,2

Address: 1Bioinformatics, GabiPD team, Max Planck Institute of Molecular Plant Physiology, 14424 Potsdam-Golm, Germany, 2Bioinformatics, 
Former RZPD German Resource Center for Genome Research GmbH, Heubnerweg 6, D-14059, Berlin, Germany, 3Max Planck Institute for Plant 
Breeding Research, Carl von Linnè Weg 10, 50829 Köln, Germany and 4Institute of Biochemistry and Biology, University of Potsdam, c/o MPI-
MP, 14424 Potsdam, Germany

Email: Jost Neigenfind* - Neigenfind@mpimp-golm.mpg.de; Gabor Gyetvai - gyetvai@mpiz-koeln.mpg.de; Rico Basekow - Basekow@mpimp-
golm.mpg.de; Svenja Diehl - svenja.diehl@pmintl.com; Ute Achenbach - achen@mpiz-koeln.mpg.de; Christiane Gebhardt - gebhardt@mpiz-
koeln.mpg.de; Joachim Selbig - Selbig@mpimp-golm.mpg.de; Birgit Kersten* - Kersten@mpimp-golm.mpg.de

* Corresponding authors    

Abstract
Background: Haplotype inference based on unphased SNP markers is an important task in population
genetics. Although there are different approaches to the inference of haplotypes in diploid species, the
existing software is not suitable for inferring haplotypes from unphased SNP data in polyploid species, such
as the cultivated potato (Solanum tuberosum). Potato species are tetraploid and highly heterozygous.

Results: Here we present the software SATlotyper which is able to handle polyploid and polyallelic data.
SATlo-typer uses the Boolean satisfiability problem to formulate Haplotype Inference by Pure Parsimony.
The software excludes existing haplotype inferences, thus allowing for calculation of alternative inferences.
As it is not known which of the multiple haplotype inferences are best supported by the given unphased
data set, we use a bootstrapping procedure that allows for scoring of alternative inferences. Finally, by
means of the bootstrapping scores, it is possible to optimise the phased genotypes belonging to a given
haplotype inference. The program is evaluated with simulated and experimental SNP data generated for
heterozygous tetraploid populations of potato. We show that, instead of taking the first haplotype
inference reported by the program, we can significantly improve the quality of the final result by applying
additional methods that include scoring of the alternative haplotype inferences and genotype optimisation.
For a sub-population of nineteen individuals, the predicted results computed by SATlotyper were directly
compared with results obtained by experimental haplotype inference via sequencing of cloned amplicons.
Prediction and experiment gave similar results regarding the inferred haplotypes and phased genotypes.

Conclusion: Our results suggest that Haplotype Inference by Pure Parsimony can be solved efficiently by
the SAT approach, even for data sets of unphased SNP from heterozygous polyploids. SATlotyper is
freeware and is distributed as a Java JAR file. The software can be downloaded from the webpage of the
GABI Primary Database at http://www.gabipd.org/projects/satlotyper/. The application of SATlotyper will
provide haplotype information, which can be used in haplotype association mapping studies of polyploid
plants.
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Background
In the case of homozygous genotypes, such as maize or
many other inbreeding crop species, haplotypes can be
directly drawn from comparison of the amplified genomic
sequence at a given locus between different individuals
[1]. Difficulties arise if homozygous genotypes are not
available, for example, in non-inbred, tetraploid potato
[2]. In such cases, it is necessary to determine the haplo-
type phase from unphased SNP (single nucleotide poly-
morphism) data. There are several approaches for
inferring haplotypes, based on (i) statistical methods,
such as the EM algorithm and Gibbs sampling or (ii) the
parsimony principle [3]. These approaches have, however,
been developed for biallelic and diploid species. There is
currently no software available for haplotype identifica-
tion in more complex polyploids [2,4]. In the case of
autotetraploids [4], one has to tackle more phase-
unknown alleles than in diploids, which results in a com-
binatorial explosion of possible haplotypes.

In this study, we aimed at the development and evalua-
tion of a generalised approach for calculating haplo-types
in polyploid species using the parsimony principle. The
goal of haplotype inference is to find a set of haplotypes
explaining every genotype present in a given unphased
population. The parsimony principle can be used to find
the smallest set of haplotypes, such that each genotype in
the population can be explained by a ploidy-specific
number of haplotypes from the set of haplotypes. The
objective of minimising the number of haplotypes
explaining a SNP data set is called Haplotype Inference by
Pure Parsimony (HIPP) [5] and was shown to be NP-hard
[6]. Lynce and Marques-Silva recently formulated the
problem as an instance of the Boolean satisfiability prob-
lem, called SAT [7,8], that can be solved orders of magni-
tude faster than the existing ILP (integer linear
programming) formulation [7,9,10]. Unfortunately, the
SAT formulation is also restricted to unphased biallelic
SNP data of diploid species. Here, we present a generalisa-
tion for polyploids of the SAT approach developed by
Lynce and Marques-Silva [7,8]. This generalisation
resulted in the development of the SATlotyper software
tool. We tested and evaluated SATlotyper with simulated
and experimental data sets of unphased SNP sites from a
specific potato locus. SNP data were obtained from differ-
ent populations of tetraploid individuals. For a subset of
individuals, we compared the computed haplotypes with
experimental haplotypes identified by amplicon cloning
and sequencing [2].

Implementation
First, basic terms are defined and the basic problem is for-
mulated. Then, the SAT model for biallelic polyploids is
presented. This is followed by the extension of the model
to polyploid and polyallelic SNP sites. After that, con-

straints are given for breaking symmetries in haplotypes
and genotypes. Constraints are also formulated for alter-
native most parsimonious sets of explaining haplotypes as
well as for alternative inferences of genotypes. A boot-
strapping procedure for scoring haplotypes and a method
for optimising alternative genotype inferences based on
these scores is presented. Afterwards, lower and upper
bounds of the most parsimonious explanation are men-
tioned and the definition of a norm for comparing geno-
types is given. Finally, the realisation of SATlotyper is
considered.

Basic definitions
The genome of every higher developed species, whether
animal, plant or fungus, is based on a species-dependent
number of homologous sets of chromosomes. The
number of sets ranges from at least one set as it is found
in yeast, which is a haploid species, followed by two sets in
human (diploid) to much bigger numbers like four sets
(tetraploid) in some varieties of the potato (e.g. Solanum
tuberosum) or six homologous sets (hexaploid) in wheat
(e.g. Triticum aestivum). The strawberry (e.g. Fragaria anan-
assa) can even have eight sets (octaploid). Chromosomes
are sequences over the nucleotide alphabet, where the
position of a specific nucleotide on the chromosome is
called site or locus (Figure 1).

Single Nucleotide Polymorphism or SNP is a DNA sequence
variation, occurring when a single nucleotide is altered
[7]. Thus, a site in a population of a species is a SNP site if
at least a second sort of nucleotide occurs at this site at
least once.

An allele is a different form of some segment of a chromo-
some, such as a second sort of nucleotide at a SNP site.
Here, we focus on SNP sites. A SNP site that contains two
different alleles is called biallelic, a SNP site that contains
three different alleles is called triallelic and a SNP site that
contains four different alleles is called tetraallelic.

A haplotype is the genetic constitution of a sequence of
nucleotides [7]. The underlying data that forms a haplo-
type can be the full DNA sequence in the region, or more
commonly the SNP sites in that region [7]. Polyploid
organisms contain two or more homologous haplotypes.

A genotype describes the conflated data of a set of homol-
ogous haplotypes. In other words, an explanation for a gen-
otype is a ploidy-specific number of homologous
haplotypes. An unphased genotype is a genotype for which
no set of explaining haplotypes is defined. There are, how-
ever, many possible sets of haplotypes explaining one
given unphased genotype. A phased genotype is a genotype
for which at least one set of explaining haplotypes is
defined. If for a given site all explaining haplotypes have
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Schema of terms related to the HIPPFigure 1
Schema of terms related to the HIPP. The total genotype of a tetraploid species consists of four chromosomes (Chro-
mosome A-D) where two chromosomes come from the first parent (blue) and the other two from the second (green). A 
locus is a fixed position on a chromosome often consisting of many nucleotides. Four haplotypes (Haplotype A-D) represent 
the nucleotide sequence of the corresponding locus on the four chromosomes. The four haplotypes A*-D* represent the con-
flated data of genotype* and thus explain genotype* (see also Figure 2, Figure 3 and Figure 7). The example illustrates a popula-
tion of one individual. A homozygous site of the presented individual and locus becomes a SNP site, if a second individual is 
added which is heterozygous at a site different from SNP1-4 (and vice versa).
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the same value, then the genotype is said to be homozygous
at that side. Otherwise the genotype is said to be hetero-
zygous at that side.

Figure 1 illustrates how the different terms are related to
each other.

Problem formulation

A SNP site of an individual is a string over the nucleotide

alphabet Σ = {A, C, G, T} with size determined by the
ploidy of the considered species. A sequence of such SNP
sites defines a genotype, with the number of SNP sites as
the length of the genotype. Let n denote the number of
individuals in the sample, m be the number of SNP sites,
and p be the ploidy of the considered species. Further-

more, a specific genotype is denoted by gi, with 1 ≤ i ≤ n,

and for a specific site j, with 1 ≤ j ≤ m, in gi we use gi, j.

Finally, let  with 1 ≤ l ≤ p, denote the lth state at site j in

genotype i. Given a set  of n genotypes, each of length

m, the haplotype inference problem is that of finding a set
 of not necessarily distinct haplotypes. Furthermore,

for each genotype gi ∈  there is at least one set of p hap-

lotypes {h1, ..., hp} ∈  such that gi is explained by {h1,

... hp}. The values of nucleotides are determined by the
number of different alleles at the corresponding SNP site:
for a biallelic SNP site the values are {0, 1}, for a triallelic
SNP site the values are {0, 1, 2}, while for a tetraallelic
SNP site the values are {0, 1, 2, 3}. Thus, a specific haplo-

type hk is a string over the alphabet {0, 1, 2, 3}, with 1 ≤ k

≤ | |.

Polyploid genotypes are represented by sequences of m
vectors, where the vectors encode the SNP sites of the
given individual. The vectors are of size p and contain
alphabetically sorted elements of the alphabet defined by
the corresponding SNP site (SNP site always refers to a
whole population). For instance, a tetraallelic SNP site of
a tetraploid individual (p = 4) which is homozygous is
encoded as a vector (0, 0, 0, 0), (1, 1, 1, 1), (2, 2, 2, 2) or
(3, 3, 3, 3) depending on the allele found at the given site
of the individual. A tetraallelic SNP site of a tetraploid
individual at which two alleles occur twice is encoded as a
vector (0, 0, 1, 1), (0, 0, 2, 2), (0, 0, 3, 3), (1, 1, 2, 2), (1,
1, 3, 3) or (2, 2, 3, 3) (in general there are eighteen possi-
ble encodings, see Table 1).

A tetraallelic SNP site of a tetraploid individual at which
two alleles occur once and a third occurs twice is encoded
as a vector (0, 1, 2, 2), (0, 1, 3, 3), (0, 2, 3, 3) or (1, 2, 3,
3) (in fact there are twelve possible encodings, see Table

1). Finally, there is only one possible encoding for a
tetraallelic SNP site of a tetraploid individual at which all
four alleles occur: (0, 1, 2, 3). Triallelic and biallelic SNP
sites are encoded accordingly as presented in Table 1.
Then, explanation of a genotype is defined as: if p haplo-
types explain an unphased genotype gi, the p haplotypes
and the unphased genotype gi show the same allele com-
position at each SNP site (Figure 2).

One of the approaches to the haplotype inference prob-
lem is called Haplotype Inference by Pure Parsimony [5].
A solution to this problem minimises the total number of
distinct haplotypes used. The SAT-based formulation of
the HIPP models whether there is a set  of r distinct

haplotypes, with r = | | haplotypes, such that each gen-

otype gi ∈  is explained by p haplotypes in . The SAT-

based algorithm considers increasing sizes for , from a
lower bound lb to an upper bound ub [7]. Trivial lower
and upper bounds are, respectively, 1 and pn. The algo-
rithm terminates for a size of  for which there are r =

| | haplotypes such that every genotype in  is

explained by p haplotypes in . The smallest r for which

such a set  exists is a most parsimonious set of explain-
ing haplotypes.

All variables of the Boolean satisfiability problem are two-
valued. Depending on the truth assignment, a Boolean
formula is either true or false. Then, SAT consists of the
determination if an assignment to a given Boolean for-
mula in conjunctive normal form (CNF) exists such that
the formula evaluates to true, or the proof that such an
assignment does not exist. Solving SAT is NP-complete
[6]. The Boolean satisfiability problem for HIPP, however,
can efficiently be solved [7] by SAT solvers such as MiniSat
[11,12], MiraXT [13] or Sat4J [14]. This may be explained
by a unknown hidden structure in the genotype data,
which makes the problem easier to solve.

SAT model for biallelic polyploids

The first SAT formulation for HIPP was introduced in [7]
and the presented constraints were implemented in the
software SHIPs [15]. Unfortunately, this approach is
restricted to diploid and biallelic species. Here, we extend
the formulation of constraints from [7] to polyploid bial-
lelic populations of genotypes. In a tetraploid, biallelic
population of genotypes, the possible alleles are modeled
by 0 or 1 respectively (e.g. SNP site j of individual i with

gi, j = (0, 1, 1, 1),  = 0,  = 1,  = 1 and  = 1).

Furthermore, the haplotypes can be modeled such that hk,

j ∈ {0, 1}, where hk, j denotes the jth site of haplotype k. A

gi j
l
,












 



 




gi j,
1 gi j,

2 gi j,
3 gi j,

4
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haplotype hk can then be viewed as a binary word hk,1 ... hk,

m of length m over the alphabet {0, 1}.

For a given value of r, the model considers r haplotypes
and aims at finding p haplotypes (which can possibly rep-
resent the same haplotype) with each genotype gi. As a

result, for each genotype gi, the model uses selector varia-

bles for selecting which haplotypes are used for explaining
gi. Since the genotype is to be explained by p haplotypes,

the model uses p sets of r selector variables, . Hence,

genotype gi is explained by haplotypes ,if

.

If the sum of the elements of binary vector gi, j equals 0,

then  = 0, with 1 ≤ l ≤ p. Then the model requires that

the following is satisfied:

where 1 ≤ k ≤ r and 1 ≤ l ≤ p. Hence, if haplotype k is
selected for explaining genotype i, by at least one of the p
representatives, then the value of haplotype k at site j must
be 0. If the sum of the elements of binary vector gi, j equals

p, then  = 1, with 1 ≤ l ≤ p. Then the model requires

that the following is satisfied:

where 1 ≤ k ≤ r and 1 ≤ l ≤ p. Hence, if haplotype k is
selected for explaining genotype i, by at least one of the p
representatives, then the value of haplotype k at site j must
be 1.

Otherwise, if the sum of the elements of binary vector gi, j

does not equal 0 nor p, one requires that the haplotypes

sk i
l
,

h hk kp1
, ...,

s sk i k i
p

p1

1 1 1, ,, ...,= =

gi j
l
,

( ),, ,¬ ∨ ¬h sk j k i
l (1)

gi j
l
,

( ),, ,h sk j k i
l∨ ¬ (2)

Table 1: Possible encodings of SNP sites

Number of alleles at given site Possible encodings

Tetraallelic SNP site Triallelic SNP site Biallelic SNP site

Homozygous individual
(0, 0, 0, 0), (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 
3, 3)

(0, 0, 0, 0), (1, 1, 1, 1), (2, 2, 2, 2) (0, 0, 0, 0), (1, 1, 1, 1)

Biallelic individual (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1), (0, 2, 
2, 2), (0, 0, 2, 2), (0, 0, 0, 2), (0, 3, 3, 3), 
(0, 0, 3, 3), (0, 0, 0, 3), (1, 2, 2, 2), (1, 1, 
2, 2), (1, 1, 1, 2), (1, 3, 3, 3), (1, 1, 3, 3), 
(1, 1, 1, 3), (2, 3, 3, 3), (2, 2, 3, 3), (2, 2, 
2, 3)

(0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1), (0, 
2, 2, 2), (0, 0, 2, 2), (0, 0, 0, 2), (1, 2, 
2, 2), (1, 1, 2, 2), (1, 1, 1, 2)

(0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)

Triallelic individual (0, 1, 2, 2), (0, 1, 1, 2), (0, 0, 1, 2), (0, 1, 
3, 3), (0, 1, 1, 3), (0, 0, 1, 3), (0, 2, 3, 3), 
(0, 2, 2, 3), (0, 0, 2, 3), (1, 2, 3, 3), (1, 2, 
2, 3), (1, 1, 2, 3)

(0, 1, 2, 2), (0, 1, 1, 2), (0, 0, 1, 2)

Tetraallelic individual (0, 1, 2, 3)

In this table all possible allele compositions for SNP sites in a tetraploid species are given. At tetraallelic SNP sites homozygous, biallelic, triallelic 
and tetraallelic individuals are possible. In contrast, at triallelic SNP sites only homozygous, biallelic and triallelic individuals are possible. 
Additionally, encodings that contain a fourth allele are not possible anymore. The number of possible allele compositions at biallelic SNP sites 
decreases analogously.
Note that the presented encodings hold only for tetraploid species. In general, the number of possible encodings increases exponentially with 
increasing ploidy. The increase is driven by all possible partitions of the ploidy using four summands for a tetraallelic individual, three summands for 
a triallelic individual and two summands for a biallelic individual. For instance, there are 2 different partitions for a biallelic site of a tetraploid 

individual: 1 + 3 = 4 and 2 + 2 = 4. Then there are 2! = 2 different encodings for the first partition and  = 1 different encodings for the second 

partition. This makes 3 different encodings in total if this SNP site is biallelic (second row, third column). If the SNP site is triallelic, the number of 

encodings is multiplied by the number of two alleles chosen from three possible alleles: 3·  = 9 (second row, second 2 column). If the SNP site 

is tetraallelic, the number of encodings is multiplied by the number of two alleles chosen from four possible alleles: 3·  = 18 (second row, first 

column).

2
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Explanation of unphased genotypesFigure 2
Explanation of unphased genotypes. The example shows an unphased tetraploid genotype at the top, which consists of 
three different alleles at the first SNP site and two different alleles at the remaining sites. In the second table, the given geno-
type is given in its vector representation. Different nucleotides at different SNP sites may be encoded by identical numbers, 
which depends on the allele composition of the SNP sites. There is an exponential number of possible haplotype explanations 
for one unphased genotype. Below, three of the possible haplotype explanations are shown. The first explanation can be 
resolved directly from the vector representation of the unphased genotype. The second explanation is resolved by randomly 
permutating the allele arrangement of the SNP sites. Finally, the third explanation is outstanding since it uses only three differ-
ent haplotypes. Note that at least the first SNP site of the example will be further encoded as described in "Extension to SAT 
model for polyallelic polyploids".
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explaining genotype gi show the corresponding number of

1s and 0s at site j. This is achieved by creating p variables

 where  ∈ {0, 1}, which represent the pos-

sible arrangements of 1s and 0s at site j. In the diploid sit-
uation, the model requires two clauses in CNF:

Formula 3 evaluates to true iff one of the possible allele
arrangements of a heterozygous and diploid SNP site is
assigned to the Boolean variables. Thus, the formula is
equivalent to the enumeration of all possible allele
arrangements at the given SNP site, where an arrangement
is given as conjunction of literals and all arrangements are
connected by disjunctions (disjunctive normal form):

For p > 2 it is also straightforward to formulate the corre-
sponding constraints in a disjunctive normal form (DNF)
by enumerating all allele arrangements analogously to
Formula 4. Each formula in DNF can be transformed into
an equivalent formula in CNF [16]. As a result, for the case
where gi, j is a heterozygous SNP site, then the model
requires that the following is satisfied:

where 1 ≤ k ≤ r and 1 ≤ l ≤ p. For each i and l, it is necessary
that exactly one haplotype is used, and so exactly one
selector variable be assigned value 1. For 1 ≤ l ≤ p, this can
be captured with cardinality constraints:

These sums can be formulated in CNF by the utilization of

an additional variables  which corresponds to the

Boolean state if a haplotype was already selected. The
model requires that the following is satisfied:

where 1 ≤ l ≤ p. Figure 3 illustrates how the variables are
used for explaining unphased genotypes.

Efficient method for obtaining the model for biallelic 
polyploids

For the case p > 2, it is straightforward to formulate the

constraints for the  variables from heterozygous SNP

sites in DNF by enumerating all allele arrangements. Each
formula in DNF can be transformed into an equivalent
formula in CNF using Tseitin's transformation [16]. How-
ever, the enumeration of all arrangements is of exponen-
tial complexity. Our objective here is to find an equivalent
representation of enumeration of arrangements. This rep-
resentation is to be in CNF and to allow formulation in
polynomial time. Combinatorial problems as described
above can also be represented by sums. For instance, for
an individual from a tetraploid species with two 0 and two
1 alleles at a biallelic SNP site, all six allele arrangements
are determined if the sum of the elements of a binary vec-
tor that represents the allele composition is constrained to
2: (0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0,
0) and (0, 1, 1, 0).

In the following, we combine simple logical circuits, such
as half adders and full adders to derive general summation
constraints which can be formulated in polynomial time.
The usage of one full adder allows the summation of two
bits where a full adder consists of two half adders. For-
mula 8 gives constraints for a half adder, where A and B
are two bits which have to be summed, C is the resulting
carry over and Shalf the resulting sum. Based on a half
adder the constraints for a full adder can be derived as
given in Formula 9. Variable Sfull is the complete sum of
the two bits A and B, where the variable C2 is the resulting
carry over. Variable C1 represents an additional bit that is
added to the sum of A and B. Thus, the total sum of A, B
and C1 is at least 0 and at most 3. The first bit of the result
is stored in Sfull and the second bit in C2.

The C2 carry over of a first full adder may be connected
with the C1 carry over of a second full adder. Analogously,
the C2 carry over of the second full adder may be con-
nected with a third full adder and so on. If w full adders
are connected in this way, the result represents a ripple
carry adder that is able to sum up two w bit words. To
describe the necessary w carry overs, the model requires
that the following is satisfied:

g gi j i j
p

, ,, ...,1 gi j
l
,

( ) ( )., , , ,g g g gi j i j i j i j
1 2 1 2∨ ∧ ¬ ∨ ¬ (3)

( ) ( )., , , ,¬ ∧ ∨ ∧ ¬g g g gi j i j i j i j
1 2 1 2 (4)

( ) ( ),, , , , , ,h g s h g sk j i j
l

k i
l

k j i j
l

k i
l∨ ¬ ∨ ¬ ∧ ¬ ∨ ∨ ¬ (5)

sk i
l
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⎛

⎝
⎜
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d s
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k i
l

k i
l

k i
l

k i
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k i
l

1 1

1

1 1

2 1

1
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, ,

, , ,( )

⇔

¬ ∨ ¬ ≤ ≤ −

⇔ ∨ ≤
+

+ + kk r

dr i
l

≤ −

=

1
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(7)

gi j
l
,

( )

( ) ( )

A B C

A B A B Shalf

∧ ⇔
¬ ∧ ∨ ¬ ∨( ) ⇔

(8)

( ) ( )

( ) ( )

A B S C C

S C S C S
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half half full

∧ ∨ ∧( ) ⇔

¬ ∨ ¬ ∧ ∨( ) ⇔

1 2

1 1
(9)
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where t = 1, ..., w - 1. Analogously, to describe the neces-
sary w full adders, the model requires that the following is
satisfied:

where t = 1, ..., w. The number of necessary bits is at most
w = Nlog2 pQ + 1 if the binary vector which is summed up has

length p. Thus, p + 1 different A vectors and p different B,

( ) ( ) ,A B S C Ct t
half
t t t∧ ∨ ∧( ) ⇔ +1 (10) ( ) ( ) ,¬ ∨ ¬ ∧ ∨( ) ⇔S C S C Shalf

t t
half
t t

full
t (11)

Usage of Boolean variablesFigure 3
Usage of Boolean variables. Panel A shows a population of three unphased genotypes. Each of the tetraploid biallelic geno-
types consists of two SNP sites. Variable names and usage of indices are given. Colour of genotype represents the coloured 
mixture of the explaining haplotypes. Yellow variables represent selection variables. In the model, phased genotypes are repre-
sented by selection variables. However, the possible phase of genotypes (explanation by haplotypes) is also shown. Panel B to 
G are read from left to right and top to bottom. If a genotype can be explained by four haplotypes from a given a set of haplo-
types, it is tried to explain the next genotype in the population. Panel B and C: one haplotype is assumed as most parsimonious 
set and it is tried to explain genotype g1. Above the dashed line, the assumed r haplotypes and all four possible most parsimo-
nious sets are shown. Below the dashed line, unphased genotype g1 and each try to explain genotype g1 by the assumed set of 
haplotypes is given. If no satisfying assignment can be found, corresponding cells are not filled with Boolean values. Relation-
ships between explaining haplotypes and the corresponding column of selection variables is symbolised by diagonal lines. Rows 
of selection variables are constrained to sum up to 1 since exactly one haplotype is to be selected for representing a chromo-
some. Panel D and E: two haplotypes are assumed as most parsimonious set. All possible sets of haplotypes are shown. Strict 
lexicographic order breaks symmetries in sets of explaining haplotypes. The third and fourth set of explaining haplotypes can 
explain genotype g1 but fail to explain genotype g2. Panel F and G: three haplotypes are assumed as most parsimonious set. The 
first set is not able to explain the whole population. In contrast, the second set is able to explain all three genotypes. Thus, this 
set solves the HIPP for the given population.
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C and Sfull vectors are needed. Furthermore, the  vari-

ables are replaced by the Al+1, t variables such that only the

Ap+1, t vector is left for constraining the sum, where 1 ≤ l ≤
p and 1 ≤ t ≤ w. It follows that summing can be represented
as shown in Figure 4.

A simplification is achieved if vector Cl,1, where 1 ≤ l ≤ p,
(Figure 4) contains the possible allele arrangements [17]
and the A vectors store the accumulation of the sum. In
this situation, all B variables can be set to zero. The con-
straints of carry overs reduce to:

(Al, t ∧ Cl, t) ⇔ Cl, t+1, (12)

where 1 ≤ l ≤ p. Additionally, if  variables are replaced

by Al+1, t variables, the sums reduce to:

((¬Al, t ∨ ¬Cl, t) ∧ (Al, t ∧ Cl, t)) ⇔ Al+1, t, (13)

where 1 ≤ l ≤ p. Reformulating the constraints from For-
mula 12 into CNF yields the following for the carry overs:

By reformulating the constraints from Formula 13 into
CNF, we obtain the following expression for the sums:

For each individual and SNP site in a biallelic population,
variables corresponding to A and C need to be defined. Let

variables , with 1 ≤ l ≤ p + 1 and 1 ≤ t ≤ w, denote the

accumulation of the sum.

Additionally, let variables , with 1 ≤ l ≤ p and 1 ≤ t ≤ w,

stand for the carry overs. For a SNP site j from genotype i,
summing constraints can easily be obtained by replacing

S full
l t,

S full
l t,

( )

( )

( ).
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(15)

ai j
l t
,
,

ci j
l t
,
,

Example of naive summation based on a ripple carry adderFigure 4
Example of naive summation based on a ripple carry adder. The A variables are used for storing the accumulation of 
the sum. The A1, t variables, with 1 ≤ t ≤ 3, are constrained to zero. Additionally, the Cl,1 and the B variables, except the Bl,1 var-
iables, with 1 ≤ l ≤ 4, are also constrained to zero. The S variables are set to the binary representation of the required sum, e.g. 
if S = (1, 0, 0), the only satisfying assignment of Boolean values to the Bl,1 variables is (1, 1, 1, 1). If S = (0, 1, 0), there are six sat-
isfying assignments to the Bl,1 variables, namely (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1) and (0, 1, 1, 0).
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the  variables with the  variables [17], with 1 ≤ l ≤

p. Finally, the  variables, with 1 ≤ t ≤ w, are con-

strained to the binary representation of the required sum.

Extension to SAT model for polyallelic polyploids

In this and the following sections we use notation  to

mean the yth bit of the binary encoded number x. Further-
more, we use a function b(A, B) to substitute variables:

Dependent on the input, Function 16 defines if the substi-
tuted variable is negated.

The  variables are insufficient for describing arrange-

ments of more than two alleles at a SNP site. The represen-
tation of, for instance, three different states needs at least
two bits. We define oj as the number of different alleles

from all individuals at SNP site j of a population of geno-
types. If oj > 2, the representation of the SNP site is

extended to wj = Llog2 ojO binary columns. Thus,  is split

to . Each allele is encoded by its correspond-

ing binary number. For instance, the four alleles 0, 1, 2
and 3 at a tetraallelic SNP site are encoded as 00, 01, 10
and 11, respectively. The haplotypes are then extended

analogously, such that  denotes the jth site of

haplotype k.

For generalisation to polyallelic SNP sites, the formula-

tion of binary sums can be reused. Let  be the number

of allele uj at a specific SNP site j in unphased genotype i,

where 1 ≤ uj ≤ oj. The value of oj can be greater than p but

. For a set of nucleotide sequences, it holds

that oj ≤ 4.

For each individual and SNP site, oj vectors vi, j of length p

are defined. Variable  is set to 1 if allele uj is repre-

sented at position l by its corresponding binary number:

where 1 ≤ l ≤ p and 1 ≤ uj ≤ oj. It is necessary to formulate

the sums  which must equal , as described

in the previous sections such that each allele at SNP site j

occurs  times in genotype i.

An example is shown in Figure 5. Generally, at a given
SNP site of an individual, there can be at most p different
alleles, even if the number of alleles in the population at
this site is oj > p. Thus, only the constraints for p sums have
to be given.

In variables , with 1 ≤ l ≤ p, the arrangements of allele

uj are represented, where allele uj is encoded as 1 and all

other alleles are encoded as 0s. In contrast, the  vari-

ables, with 1 ≤ l ≤ p and 1 ≤ tj ≤ wj, represent the arrange-

ments of all alleles at the given SNP site. It is still necessary

that the correct haplotypes  are chosen to

explain the alleles at gi, j. Then the model requires that the

following is satisfied:

where 1 ≤ tj ≤ wj, 1 ≤ k ≤ r and 1 ≤ l ≤ p.

The final (most parsimonious) number of haplotypes is
denoted by rf and the maximal number of alleles, which is

found at a SNP site of the considered population, is

denoted by omax. Then, if p log2 p ≤ rf log2 omax, the number

of variables (Table 2) and constraints in the proposed
model is, respectively, (n m p2 log2 p) and (rf n m p

log2 omax) . The complexity for the variables and con-
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straints decreases to (n m p log2 p) and (rf n m p) if the

nucleotide alphabet is considered.

Constraints for breaking symmetries in haplotypes
It is important to note that the model proposed above is
not practical for most existing problem instances, even
with the most efficient SAT solvers [7]. This problem,
however, can be solved by breaking symmetries to prune
the search space. As described in [7,8], symmetries in
explaining haplotypes can be broken by sorting the hap-
lotypes lexicographically. A strict lexicographic ordering
can be achieved by the formulation of constraints that
become true if h1 is strictly smaller than h2, h2 is strictly
smaller than h3, and so on. If the ordering is not strict it is
not guaranteed that all explaining haplotypes are pairwise
distinct.

For the ordering, hk, j is compared with hk+1, j, where 1 ≤ k
≤ r - 1 and 1 ≤ j ≤ m. Additionally, new variables ek, j have
to be introduced, which record the value of hk, j <hk+1, j.
Then, the model requires that the following is satisfied:

where 1 ≤ j ≤ m + 1. If an ek, j becomes true because the con-
straint hk, j <hk+1, j is satisfied, it is not necessary to compare
hk, j' to hk+1, j', where j' <j. We must, however, ensure that hk,

j' ≤ hk+1, j', where j' > j. Then, the model requires that the
following is satisfied:

(¬hk, j ∨ hk+1, j ∨ ek, j), (20)

where 1 ≤ j ≤ m. If an assignment can be found such that
all clauses in Formulas 19 – 20 are true, where 1 ≤ k ≤ r -
1, the haplotypes are in lexicographical order.

Constraints for breaking symmetries in genotypes

Haplotypes that infer a genotype can be lexicographically
ordered in a way similar to the set of r explaining haplo-
types [7,8]. The lth haplotype inferring an unphased geno-

type i is marked by a binary variable . The sum

 is constrained to equal 1 so that exactly one

haplotype is selected for explaining the lth row of gi. In

contrast to the most parsimonious set of explaining hap-
lotypes, the selection variables have to be ordered non-
strict lexicographically since homozygous genotypes can
not be explained by sets of pairwise distinct haplotypes.
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Example showing constraints of triallelic SNP siteFigure 5
Example showing constraints of triallelic SNP site. Assume a triallelic SNP site and an individual with the allele compo-
sition (0, 1, 2, 2). First, the alleles are encoded to their corresponding binary representation, here 0 ≡ 00, 1 ≡ 01 and 2 ≡ 10. 

Second, each allele is recoded to binary variables ,  and , with 1 ≤ l ≤ 4. Finally, the three vectors are constrained 

to the corresponding sum.
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As a result, the p selection vectors of each genotype gi can

be ordered lexicographically by constraining the vectors

by [7,8]. For this purpose, the con-

straints of ordering the haplotypes are reused and slightly

changed. New variables  have to be introduced, which

record the value of . Then, the model requires

that the following is satisfied:

where 1 ≤ k ≤ r + 1. If an  becomes true because the

constraint  is satisfied, it is not necessary to com-

pare  to , where k' <k. We must, however, ensure

that , where k' > k. Then, the model requires that

the following is satisfied:

where 1 ≤ k ≤ r. Because it is almost the formulation of a

strict lexicographic order, except that the variable 

does not have to be true, it has to be relaxed to become a
non-strict order. This can be done by formulating the con-

straints for either vector  is strict smaller than vector

 or both vectors are equal.

Finally, the model requires that the following is satisfied:

where 1 ≤ k ≤ r. If an assignment can be found for which
all clauses in Formulas 21 – 23 are true, where 1 ≤ l ≤ p -
1, the selection variables of genotype gi are in non-strict
lexicographic order.

Constraints for alternative most parsimonious sets of 
haplotypes

There can be several most parsimonious sets of haplo-
types which differ slightly and yet can explain the

unphased genotype data. Call  the set of previously

found binary assignments to hk, j, where 1 ≤ i ≤ Nalt and Nalt

is the number of previously found inferences. Constraints
for alternative most parsimonious sets of haplotypes can
be easily formulated by the exclusion of previously found
sets. Then, the model requires that the following is satis-
fied:

where 1 ≤ k ≤ r and 1 ≤ i ≤ Nalt. Application of De Morgan's
laws to Formula 24 results in Formula 25:

A nice feature of constraining alternative haplotype infer-
ences is that Formula 25 is automatically in CNF.

Constraints for alternative genotype inferences

Given p explaining haplotypes, there can also be alterna-
tive inferences of genotypes. Constraints of alternative
genotype inferences are given similarly to the constraints

of alternative haplotype inferences. Call  the set of

previously found binary assignments to the selection var-

iables  of genotype i, where 1 ≤ j ≤ Malt and Malt is the

number of previously found inferences. Now consider
only one previously found assignment to the selection

variables of genotype i with . Since it

is sufficient to constrain selection variables to 0, which
were set to 1 in a previously computed inference, the
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Table 2: Complexity of the model

Number of variables

h rf m log2 omax
g n m p log2 omax
s rf n p
a n m p2 log2 p
c n m p2log2 p
v n m p2

The complexity of the presented model is listed below. Variable rf is 
the final value of r. The maximal number of alleles, which is found at a 
SNP site of the considered population, is denoted by omax. The 

number of variables is (n m p2 log2 p). If p log2 p ≤ rf log2 omax, the 

number of constraints is (rf n m p log2 omax).
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already found explanations of all unphased genotypes are
excluded by:

Application of De Morgan's laws to Formula 26 results in
Formula 27:

Formula 27 is in CNF and no reformulation is necessary.
Such clauses have to be given for each previously found
genotype inference j.

For constraining alternative genotype inferences, it is very
important that genotype symmetries are broken as shown
in Section "Constraints for breaking symmetries in geno-
types". If symmetries are not broken, and if an assignment

to the  variables is excluded for a given unphased gen-

otype gi, the SAT solver can still report an assignment that

represents a permutation of the excluded assignment. For

instance, vector  with length r is exchanged by vector

 with length r.

Note that the number of alternative genotype inferences is
equal to or greater than the number of alternative most
parsimonious sets of haplotypes, since each alternative set
of haplotypes defines at least one inference of genotypes.
As a result, we do not calculate complete alternative geno-
type inferences in this study. Instead, we introduce an
optimisation method for genotypes, based on explaining
haplotypes and bootstrapping (see Section "Bootstrap-
ping" and Section "Optimisation of genotypes").

Bootstrapping
All possible minimal inferences are treated equally by the
SAT approach. It is unlikely that the first haplotype infer-
ence found is the most probable one under the assumed
model and given data. It is also unlikely that the first hap-
lotype inference is the inference with fewest differences
compared to the real data. The question which haplotype
inference should be taken for further analysis remains.

There must be one or more inferences which are sup-
ported better by the input data. To introduce a quality
measurement of the haplotypes and alternative inferences
which have been calculated, a bootstrapping procedure is
introduced as follows. Bootstrapping is widely used (e.g.
in phylogenetic reconstruction [18]) for estimating prop-
erties of an estimator. Those properties are measured
when sampling from an approximate distribution. One
standard choice for an approximate distribution is the
empirical distribution of the observed data. To use the
bootstrap to assess the uncertainty of estimates of the
phased genotypes, the data should be a series of inde-
pendently sampled points. Here, we assume that haplo-
types are drawn independently from a most parsimonious
set of explaining haplotypes which is the base of the pop-
ulation of genotypes. Thus, the independently drawn hap-
lotypes satisfy the independence assumptions of the
bootstrap method.

From a set  of n given unphased genotypes, a new set of

n unphased genotypes  is sampled by replacement (Fig-

ure 6). Sampled sets  are inferred as described before,

and each haplotype occurring in the inferences of the gen-
otypes is added to a list. If a haplotype does not appear in
the list, the haplotype and the number of its occurrences
in the phased genotypes (its count) are added to the list.
Otherwise, the former count of the haplotype in the list is

increased by that number. For one , this procedure is

defined as one bootstrap replicate. Thus, the count of a
haplotype, which is equivalent to a frequency, reflects its
support by the input data and is defined as the haplotype's
score. The process is repeated, and after a given number of
bootstrap replicates, the corresponding counts of each
haplotype occurring in the genotypes of an alternative
haplotype inference are summed up. This sum is used to
score the alternative haplotype inferences. The inference
with the greatest score is assumed to be the one with the
greatest support from the input data given the parsimony
criterion.

Optimisation of genotypes
Based on computed alternative most parsimonious sets of
haplotypes and bootstrapping scores, an optimisation of
the phased genotypes can be computed (Figure 7). For
each most parsimonious set of haplotypes the algorithm
therefore computes all alternative inferences of each
unphased genotype, independent of the others. As men-
tioned above, this method only works if symmetries in
genotypes are broken (if symmetries are not broken, the
algorithm also reports genotype inferences that use same
sets of haplotypes in different orders). This procedure
results in a list of alternative phased genotypes for each
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original unphased genotype. Using the bootstrapping
approach, each computed genotype is scored by the sum
of the bootstrapping scores of its contained haplotypes.
Alternatively, without bootstrapping, the frequencies of
the haplotypes in the phased genotypes of all computed
alternative inferences can be used similar to bootstrap-
ping counts. Finally, from the alternative inference list of
each genotype the highest scored genotype is selected in
order to replace the former genotype in the inference. This
forms a new inference of the original data with equal or
better scoring.

The number of all alternative genotype inferences for a
given most parsimonious set of haplotypes is the product
of the alternative inferences of each genotype. Moreover,
the product of the number of alternative genotype infer-
ences from each alternative most parsimonious set of hap-
lotypes is the number of all valid most parsimonious
HIPPs.

Calculation of lower and upper bounds
In contrast to integer linear programming formulations of
HIPP [9,10], the SAT approach is not able to optimise a

Example of BootstrappingFigure 6
Example of Bootstrapping. Panel A shows two different most parsimonious inferences of four genotypes from a tetraploid 
species. different genotypes are represented by different coloured rings whereas different explaining haplotypes are repre-
sented by different coloured circles. In Panel B, the urn symbolises the population from which genotypes are sampled. Three 
bootstrap replicates are drawn with replacement, the genotypes are inferred, and the occurrences of the different haplotypes 
are counted (middle). Because of the parsimony criterion, the shown inference of sample 1 and sample 2 are unique. Sample 3 
can alternatively be inferred with the green, red and blue haplotypes. The overall number of occurrences of the haplotypes is 
calculated. Finally, the two most parsimonious inferences are scored by the counts of haplotypes. The inference on the left has 
score 222 and the inference on the right has score 78. Inference on the left is selected for further analysis.
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Example of optimisationFigure 7
Example of optimisation. Based on computed alternative most parsimonious sets of haplotypes and bootstrapping scores, 
an optimisation of the phased genotypes is possible. For each most parsimonious set of haplotypes the algorithm therefore 
computes all alternative inferences of each unphased genotype. One most parsimonious set of explaining haplotypes and corre-
sponding bootstrapping scores of some tetraploid data set are shown in the first table. The first column in the table below 
shows the unphased genotypes. The other columns contain alternative inferences and bootstrapping scores of the correspond-
ing unphased genotype based on the explaining haplotypes. From the row of each genotype the highest scored phased geno-
type is selected (red). This forms a new inference of the original data with equal or better scoring.
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target function directly. Thus, each possible number of
explaining haplotypes has to be tested incrementally start-
ing with r = 1. Methods for the computation of lower and
upper bounds [7,19] can be applied to avoid the iteration
until a most parsimonious solution is found. Further-
more, a lower bound can be used for reducing the size of
the model [7]. Genotypes which only can be explained by
distinct sets of haplotypes are called incompatible. Incom-
patible genotypes can be used for deriving a lower bound
such that the size of the model can be reduced by elimi-
nating s variables and corresponding clauses.

In the existing version of SATlotyper, the computation of
lower and upper bounds is not implemented. It was
found empirically that, if the approach is able to find a
most parsimonious set of haplotypes in reasonable time,
it is also able to prove the unsatisfiability of smaller sets of
haplotypes in reasonable time. Nevertheless, it is not clear
how large the increase in solvable instances would be if a
calculation of lower and upper bounds were used in hap-
lotype inference of polyploids. The computation of upper
and lower bounds according to [7,19] may be added to
SATlotyper in future versions.

Comparing inferences with real data
To define a standard for the measurement of an inference
of haplotypes and corresponding genotypes, we sum up
the differences between genotypes from inference and cor-
responding genotypes from real data. The number of dif-
ferences is defined as the distance d between both sets.

Call Gi =  the inference of an unphased geno-

type by the SAT approach and  the real

data for instance from simulation. Every haplotype hk in

the inference has a counterpart  in the real data set. The

distance is defined recursively as shown in Formula 28
and Formula 29, where dham(hk, h'k') is the Hamming dis-

tance between hk and h'k'.

d = min (D(G, G')) (29)

The complexity of calculating d is exponential but for
small p this is still possible.

Software realisation

SATlotyper is implemented in Java and realises the con-
straints described above. Additionally, there are some
obvious improvements included in the program, such as

converting the  vectors, with 1 ≤ l ≤ p, to the corre-

sponding Boolean inverse if min(q, p - q) = p - q, where q
is the number of 1s. Another improvement is the enumer-
ation of constraints for a SNP site such that instead of oj

only oj - 1 sums have to be given if oj ≤ p.

The SAT approach that we generalised [7] can not opti-
mise a target function directly (but there are efforts to
combine ILP and SAT features [12,17,20,21]). Therefore,
the SAT formulation of an assumed number of explaining
haplotypes has to be tested for satisfiability by the SAT
solver. If it fails, the number of explaining haplotypes is
incremented and then tested again. This is repeated until
the SAT solver reports satisfiability. For unphased geno-
types, given in CSV format, the program generates corre-
sponding constraints and writes the resulting formula in
CNF format to the file system. Next, the binary of the cor-
responding SAT solver is executed with the newly gener-
ated CNF file as input. After successful termination of the
solver, SATlotyper reads, analyses and reports the output
of the solver in XML format (Additional file 1).

SATlotyper is able to execute different SAT solvers and was
tested with MiniSat [11,12], MiraXT [13] (a multithreaded
SAT solver) and Sat4J [14] but can be easily adapted to
other solvers accepting standard CNF file format. Access to
single Boolean variables is realised by a hash which con-
tains corresponding matrices. This object allows indexing
by means of the corresponding keyword, for instance
"haplotype", for a given type of variable.

Results
The following results were computed on a laptop with
2048 MB RAM and AMD Turion™ 64 X2 Mobile Technol-
ogy TL-56 (2 × 1.80 GHz). The operation system was a
Linux system (Debian 4.0 ("etch")), kernel version 2.6.18-
5-amd64. MiniSat 2 (minisat2-070721.zip [11,12]) was
used for solving SAT.

Development of SATlotyper
The presented generalisation of the original SAT approach
[7] led to the development of SATlotyper, which can infer
polyploid and polyallelic input. The SATlotyper algorithm
is able to handle incomplete data sets where SNP sites are
partly missing, without bringing in unjustified assump-
tions. For instance, SNP sites are missing when genotypes
are heterozygous for alleles with indels (insertions or
deletions) that may result in an interruption of analysable
sequence data. Unknown sites are marked "N". With the
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SAT approach, no assumptions are made for individuals
that contain SNP sites with no information available, i.e.
the formulation of constraints for the corresponding indi-
vidual and SNP site is omitted. If the formulation of con-
straints for a site is omitted, the SAT solver uses a set of
haplotypes inferred from other unphased genotypes, pro-
vided that these haplotypes are compatible with the
known sites of the unphased genotype containing missing
information. The choice of haplotypes for explaining such
a genotype is independent of the alleles that the explain-
ing haplotypes show at the site with missing information.

Testing SATlotyper on simulated data
In order to test SATlotypers performance, we simulated
haplotypes comprising six SNP sites for ten tetraploid,
biallelic populations with 100 individuals each. For every
population, six simulated haplotypes were used as a pool
for further simulation. These six different haplotypes of
one population were sampled uniformly to generate a
population of tetraploid individuals. The alleles of these
haplotypes were also sampled uniformly. The simulation
resulted in ten data sets of 100 individuals each.

In order to simulate noise in the simulated data sets, data
changes were introduced by conversion of a randomly
chosen nucleotide of a randomly chosen individual at a
randomly chosen SNP site to the other allele at the same
site. All manipulated SNP sites were marked and no
longer changed. If, however, a change has to be intro-
duced and the random procedure selects an already
manipulated individual and site, the noise-procedure is
repeated until the needed change is introduced.
Homozygous SNP sites were excluded from change on the
assumption that these sites are correctly analysed in real
data sets. Moreover, heterozygous SNP sites were not
changed to homozygous sites. Thus, x% of noise means
exactly x% of changed SNP sites in the data set. The ten
simulated data sets were modified by noise, where noise
was increased from 0% to 10% in steps of 1% resulting in
110 different data sets. Four types of analysis were per-
formed with the simulated data sets (Table 3). These four
methods are referred to as Method 1–4 and are computed
as follows.

Method 1: for each data set exactly one haplotype infer-
ence was calculated.

Method 2: for each data set up to 250 alternative most par-
simonious sets of explaining haplotypes and the corre-
sponding haplotype inferences were calculated.
Additionally, bootstrapping was performed based on the
calculated haplotypes by generation of 250 bootstrapping
replicates. Phased genotypes were then scored by the sum
of the scores of their constituent haplotypes, and these
values were summed up to score complete haplotype

inferences (see Section "Implementation"). The best
scored haplotype inference was selected without further
optimisation with regard to genotype inference.

Method 3: the analysis described in Method 2 was further
refined by an optimisation with regard to genotype infer-
ence performed for each alternative most parsimonious
set of haplotypes (see Section "Implementation"). 

Method 4: the first haplotype inference was used to opti-
mise the genotype inference. For this purpose, the haplo-
types were scored by their frequency in all genotypes of
the first haplotype inference. Next, optimisation of the
genotypes was carried out as described.

The phased genotypes resulting from all four types of
analysis were compared with the corresponding original
simulated data set. We first tested whether the original sets
of haplotypes, which were used for generating the simula-
tions, could be identified by Method 1, Method 2 and
Method 3. Method 4 was left out since different scorings
of one haplotype inference do not affect the inferred most
parsimonious set of haplotypes. Without added noise, the
six original haplotypes could be identified by all three
methods. With the addition of noise it was not possible to
identify all six original haplotypes in all data sets using the
first haplotype inference (Method 1). For three different
data sets, this method found fewer than the six original
haplotypes (only five out of six were identified in one data
set with 6%, 7% and 10% noise). In contrast, all six orig-
inal haplotypes were correctly inferred by the analyses
with bootstrapping (Method 2) and the analyses with
bootstrapping and optimisation (Method 3). For all types
of analysis, the phased genotypes resulting from each
analysis were compared with the original simulated data
sets by computing the minimal Hamming distances
between an inferred genotype and the corresponding orig-
inal genotype without noise from the simulation. The
minimal Hamming distance was computed as given in
Section "Implementation". Based on the minimal Ham-

Table 3: Comparison of the different methods of SATlotyper

Method Features of SATlotyper

Alt. expl. hap. Bootstrapping Optimisation

1 No No No
2 Yes Yes No
3 Yes Yes Yes
4 No No Yes

The different features of SATlotyper are listed below. For the 
different results see also Figure 8, Figure 9 and Figure 12. Alt. expl. 
hap., computation of alternative most parsimonious sets of explaining 
haplotypes.
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ming distance, the correctness for all four types of analysis
was calculated as follows:

where 600 is the number of SNP sites in the simulation.
The denominator in Formula 30 is motivated by the min-
imal possible number of incorrectly inferred nucleotides
compared to the simulated data without noise (on the
right of the sum of the denominator). This value is
dependent on the noise used and is subtracted from the
number of SNP sites in the data set such that the denom-
inator represents the maximal possible number of cor-
rectly inferable nucleotides. The number of correctly
inferred nucleotides calculated by the SAT approach is
given by the numerator. The mean correctness of the ten
different data sets was plotted against the noise (Figure 8).

Without noise, all methods gave predictions close to
100% correctness. With noise added the results of the four
analysis methods showed an increasing correctness to the

original data in the following order: Method 1 < Method
2 < Method 4 < Method 3. This means that Method 3,
which is the method with bootstrapping and genotype
optimisation, gave the best results for all values of noise.
The comparison between Method 2 and Method 1 dem-
onstrated that the application of bootstrapping in order to
select the highest scored haplotype inference (Method 2)
gives better results than the method without bootstrap-
ping (Method 1). The distributions of nucleotide dis-
tances (minimal Hamming distance) from Method 1 and
Method 3 for a given amount of noise were compared by
the Kruskal-Wallis test with a significance level of 5%. All
p-values except for the 0%-noise case were below 0.05,
and consequently the null hypothesis of both distribu-
tions being the same was rejected. Although the distribu-
tions of nucleotide distances from Method 1 and Method
2 were not significantly different, the mean values of the
distances of Method 2 were always smaller than those of
Method 1.

100
600

600 600 100 1
⋅ −

− ⋅ − ⋅

minimal Hamming distance

noise%
, (30)

Comparison of four types of analysis using simulated data setsFigure 8
Comparison of four types of analysis using simulated data sets. For ten tetraploid, biallelic populations with 100 indi-
viduals each, haplotypes comprising six SNP sites were simulated. 0–10% noise was added to the data. Unphased simulated data 
sets were analysed with SATlotyper using four different methods: 1) first inference without optimisation; 2) alternative haplo-
type inferences scored by bootstrapping, selection of the best scored; 3) alternative haplotype inferences scored by bootstrap-
ping, further optimisation of genotype inference; 4) first haplotype inference with optimisation of genotype inference. On the 
basis of the Hamming distance between predicted and original simulated genotype inferences, the correctness was calculated, 
normalised and plotted against the noise. Every data point represents the mean value of ten populations for the respective 
value of noise.
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Performance of SATlotyper with unphased SNP data from 
tetraploid potato genotypes
The performance of SATlotyper was tested using unphased
SNP data from the locus BA213c14t7 of Solanum tubero-
sum. Locus BA213c14t7 corresponds to the sequenced T7-
end of the BAC (bacterial artificial chromosome) clone
BA213c14 and is located on potato chromosome V
between the markers GP21 and GP179 near the R1 gene
for resistance to late blight [22] (see Chromosome V in
PoMaMo, The Potato Maps and More Database [23,24]).
This intergenic sequence region is characterised by high
sequence variability. The BA213c14t7 sequence also
includes SNP sites associated with resistance against the
parasitic root cyst nematode Globodera pallida [25].

As input to SATlotyper, two sets of unphased SNP data of
BA213c14t7 were generated from 194 heterozygous tetra-
ploid potato individuals from two different breeders: 103
individuals from breeder 1 and 91 individuals from
breeder 2. The locus was amplified from genomic DNA of

the 194 individuals and the SNP allele dosage (0:4, 1:3,
2:2, 3:1 and 4:0) was estimated for twelve biallelic SNP
markers based on the sequence trace files (SNP sites 139,
143, 152, 157, 178, 214, 218, 236, 244, 253, 273, 274;
Figure 9; Additional file 2). The resulting unphased SNP
data were used as input for a SATlotyper analysis, where
only one haplotype inference was calculated (Method 1).
The number of SNP sites was varied from two to twelve
and the running times were determined. In Figure 10 the
log of running time is plotted against the number of SNP
sites analysed for the two different data sets (breeder 1,
breeder 2). Even for twelve SNP sites, the running time
was less than 80 seconds for both data sets. Figure 10
demonstrates that the computational complexity grows
exponentially with linear increase of the number of SNP
sites.

Comparison of computational and experimental haplotypes for potato locus BA213c14t7Figure 9
Comparison of computational and experimental haplotypes for potato locus BA213c14t7. Sequence of the potato 
locus BA213c14t7. The evaluated SNP sites are indicated by boxes. For a sub-population of nineteen individuals, haplotype 
sequences were identified computationally with Method 2 and experimentally by amplicon cloning and sequencing. The nine 
haplotypes identified by both methods are displayed in red.
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Comparison of SATlotyper results with experimentally 
determined haplotypes
In order to evaluate SATlotyper further, we compared
computed haplotypes with experimentally determined
haplotypes at the BA213c14t7 locus using a subset of nine-
teen heterozygous tetraploid individuals out of the two
populations described above. We identified the haplo-
types for twelve SNP sites both computationally and
experimentally. The sequence of the BA213c14t7 locus
and the SNP sites analysed are shown in Figure 9.

Computational haplotype inference
The unphased SNP data from the nineteen individuals
were used as input for the computational haplotype infer-
ence with SATlotyper analysis (Method 2). Up to 250
alternative most parsimonious sets of haplotypes and the
corresponding haplotype inferences were calculated. On

the basis of the calculated haplotypes bootstrapping was
performed (250 samples) in order to score the alternative
haplotype inferences. The haplotype inference with the
highest score was selected. SATlotyper identified 114 alter-
native most parsimonious sets of haplotypes for this data
set with a minimal number of twelve explaining haplo-
types. Additional file 1 (XML output of SATlotyper) gives
the input data, the bootstrapping results for all haplotypes
and the different scored haplotype inferences which are in
order of score. For each alternative haplotype inference
the first corresponding genotype inference is given. In Fig-
ure 9, the twelve haplotypes obtained from the haplotype
inference with the highest bootstrapping score are listed,
together with the experimentally determined haplotypes.
In addition, an optimisation with regard to genotype
inference was performed for all alternative haplotype
inferences (Method 3).

Performance of SATlotyper with real data sets from tetraploid potato genotypesFigure 10
Performance of SATlotyper with real data sets from tetraploid potato genotypes. Testing of SATlotyper (Method 
1) with two sets of unphased SNP data from the locus BA213c14t7 of Solanum tuberosum (Figure 9). Analysis of 103 genotypes 
from breeder 1 and 91 genotypes from breeder 2 took place. The running time was determined when the first haplotype infer-
ence was reported. The logarithm of the running time (mean value of ten runs each) was plotted against the number of SNP 
sites.
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Experimental haplotype inference
The inference of haplotypes by SATlotyper from experi-
mental SNP data requires the scoring of the SNP allele
dosage (zero, one, two, three or four in a tetraploid indi-
vidual) in PCR amplicons derived from partially hetero-
zygous individuals. Preferential amplification of one
allele versus the other may occur at heterozygous loci,
resulting in erroneous scores of the allele dosage [25],
which leads to the calculation of erroneous haplotypes by
SATlotyper. Even with a low percentage of erroneous
scores of allele dosage per single SNP site, the combina-
tion of errors from several SNP sites can lead to an inflated
number of haplotypes that do not exist. To verify haplo-
type models computed by SATlotyper from experimental
SNP data, which are not error free, we performed an inde-
pendent experimental haplotyping. The number and dos-
age of haplotypes present at a specific locus in a given
individual can be experimentally determined by cloning
and sequencing a sufficient number of PCR fragments
generated from genomic DNA of that individual at that
specific locus. The number of different haplotypes is
inferred from the number of consensus sequence variants
found in the clone sample, and the haplotype dosage is
inferred from the frequency of each consensus sequence
variant in the clone sample.

For the subset of nineteen individuals, the haplotypes at
the BA213c14t7 locus with respect to the twelve SNP sites
were determined experimentally (Additional file 2) by the
sequencing of at least twenty-four cloned amplicons from
each of the nineteen individuals. The number of
sequenced clones per tetraploid individual was raised
from sixteen, as proposed by Simko [2], to twenty-four per
individual, in order to accept as real only haplotypes that
could be detected at least twice. This was necessary owing
to the possible sequence errors introduced by PCR and
Sanger sequencing. In total, 590 amplicon derived clones
were sequenced, which revealed ten distinct haplotypes
present in the population of nineteen individuals (Table

4, Figure 9). On the basis of the haplotypes observed and
the frequency of each haplotype sequence per tetraploid
individual, the most likely genotype for each individual
was determined (Table 5). The genotype models also
allowed determination of haplotype frequencies in the
subset of nineteen individuals. Chi-square statistics
revealed significant deviation of the observed frequency
distribution of haplotype sequences from the numbers
expected based on the genotype model in five individuals.
Haplotypes H1, H5 and H8 with a frequency of 84% alto-
gether were the most abundant ones (Table 4). The other
seven haplotypes had a frequency of less than 5% each.
Interestingly, haplotype H4 present in individual S25
shared high similarity (100%, e value: 1-69) with the
sequence of BAC clone PGEC472P22 originated from the
wild potato species Solanum demissum [26]. This indicated
that haplotype H4 corresponds to an introgression from
Solanum demissum containing the R1 resistance gene [26].

Comparison of computed and experimental haplotype and genotype 
models
From the nineteen individuals analysed, nine haplotypes
were identified by both methods (Figure 9). The only
experimental haplotype not detected computationally
was haplotype H2 (Table 4). H2 was identified only in
individual S9, in only two out of twenty-four analysed
clones (Table 5). Haplotype H2 did not occur in any of the
114 alternative computed inferences (Additional file 1),
which leads to the conclusion that the unphased data do
not support haplotype 2 in the most parsimonious set of
explaining haplotypes. Three haplotypes were identified
computationally but not experimentally. This may result
from imperfect input data, for example, from erroneous
assignment of SNP allele dosage, which leads to the crea-
tion of additional "non real" haplotypes by SATlotyper,
which are needed to satisfy the input data. Alternatively,
the experimental haplotype inference may have missed
rare but real haplotypes owing to underrepresentation of
the sequence in the cloned amplicons.

Table 4: Experimental haplotypes H1 to H10

Hapl. SNP139 SNP143 SNP152 SNP157 SNP178 SNP214 SNP218 SNP236 SNP244 SNP253 SNP273 SNP274 Fr. [%]

H1 A G T T G C C C C T G T 26.3
H2 A G T T G C A C T C T A 1.3
H3 G G T T G C C C C T G T 2.6
H4 A A T G A C C C T T G A 2.6
H5 G G T T G C A C T C T A 19.7
H6 G G T T G T A C T C T A 2.6
H7 G G A T G C A C T C T A 1.3
H8 G G A T G C C T C T G A 38.1
H9 G G A T G C C C C T G A 1.3
H10 G G T T G C C C C T G A 3.9

Experimental haplotypes for potato locus BA213c14t7 resulting from the analysis of nineteen tetraploid individuals (Table 5). SNP sites 139–274 
(Figure 9). Values for allele frequency of each haplotype within the nineteen genotypes are based on the model for the most probable genotypes 
(Table 5) with a maximum of seventy-six possible alleles in this sub-population (100%). Hapl., haplotype. Fr., frequency.
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The high concordance between the experimental results
and the prediction is shown in Figure 11. Here, the boot-
strapping score is compared with the experimentally
determined frequency of the nine common haplotypes.

For the nineteen genotypes, we also compared the com-
puted genotype inferences with the experimental ones
(Figure 12). The minimal Hamming distance between a
predicted genotype and the corresponding experimentally
determined genotype was computed as described in Sec-
tion "Implementation". For every genotype the correct-
ness was derived from the Hamming distance as follows:

Formula 31 is motivated analogously to Formula 30,
except that the amount of noise is not known. As a result,
the denominator represents the total number of nucle-
otides. As shown in Figure 12, we obtained for 80% of the
genotypes a correctness of at least 90% when compared
with the experimental data. For two individuals (B43, B4)
the predicted and experimental haplotypes were exactly
the same. For twelve of the nineteen individuals at least

three of the four predicted haplotypes were confirmed by
the experimental data (Additional file 1, Table 5). The
additional optimisation with regard to genotype inference
according to Method 3 did not result in a further improve-
ment of the Hamming distance and correctness between
predicted and experimental phased genotypes for the
nineteen individuals analysed.

Discussion
Existing approaches for inferring haplotypes from
unphased SNP data are only applicable to biallelic and
diploid species. This study therefore aimed at the develop-
ment of an approach for calculating haplotypes in hetero-
zygous polyploid species. Generalising the approach from
[7], a Java based program was developed which formu-
lates HIPP for the Boolean satisfiability problem. Instead
of giving the constraints for combinatorial sub problems
explicitly, SATlotyper generates constraints for summing
such that the complexity decreases from exponential to
polynomial for polyploid and polyallelic data sets. Other
methods for summing based on the SAT approach have
been described [17], which are possibly easier to solve by
the SAT solver so that a future version of SATlotyper will
be further optimised. SATlotyper is able to handle missing
SNP information by omitting constraints for such sites so

100
48

48
⋅ −minimal Hamming distance

. (31)

Table 5: Haplotypes found in nineteen tetraploid potato individuals and resulting genotype model

Individual H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Genotype model χ2-value p-value

S9 19 2 3 1/1/2/5 8.25 0.02
S25 21 27 4/4/8/8 0.75 0.39
S50 18 3 3 1/1/3/6 6.00 0.05
S73 18 14 1/1/8/8 0.50 0.48
S83 26 2 1/1/1/5 4.76 0.03
S89 7 2 14 8/8/5/7 3.26 0.20
S93 26 8/8/8/8 0 1
B1 7 17 8/8/8/5 0.22 0.64
B4 4 19 8/8/8/5 0.71 0.40
B26 24 0 1
B30 79 5/5/5/5 0 1
B37 7 16 8/8/8/1 0.36 0.55
B43 28 2 1/1/1/3 5.38 0.02
B52 9 14 1/1/8/8

1/8/8/8
1.09 or 2.45 0.30 0.12

B63 2 17 2 8 5/8/9/10 20.79 0.0001
B75 2 9 13 10/10/5/8 4.25 0.12
B80 10 12 1/1/5/5 0.18 0.67
B86 5 19 8/8/8/5 0.22 0.64
B108 20 3 1/1/1/5 1.75 0.19

For nineteen individuals, the number of clones obtained per individual for each of the ten haplotypes (Table 4) and the resulting genotype model are 
shown. For each genotype model, the goodness of fit (chi-square) and the p-values for the deviation of the number of observed clones from the 
expectation based on the genotype model are calculated. Genotype models which do not significantly deviate from the observed haplotype 
distribution are shown in bold (significance level: 5%). It is assumed that haplotype frequencies deviate χ2 distributed from the genotype model, with 
# of different alleles -1 degrees of freedom. In the first row of Table 5, the χ2-value is calculated as follows: 

. The p-value represents the probability of obtaining haplotype frequencies 

at least as extreme as the observed ones, given that the genotype model (null hypothesis) is true.
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that no unjustified assumptions about nucleotide fre-
quencies have to be made.

For a given data set of unphased genotypes, it is possible
by means of SATlotyper to calculate the first most parsi-
monious set of explaining haplotypes and corresponding
phased genotypes (Method 1). One drawback of the par-
simony approach is the sparsity of statistical information.
A bootstrapping procedure can therefore be used to score
haplotype inferences, in case there is more than one pos-
sible haplotype inference (Method 2). Since unphased
genotypes can also have alternative inferences, it is possi-
ble to optimise the phased genotypes in respect to a most
parsimonious set of haplotypes and the corresponding
bootstrapping scores (Method 3). It is also possible to
score the haplotypes without bootstrapping simply by
their frequencies in the phased genotypes, which can be
used for selecting the best haplotype inference in the case
of alternative inferences and for performing an optimisa-
tion with regard to alternative genotype inferences
(Method 4).

In this study, SATlotyper was tested and evaluated with
simulated and experimental data sets of unphased SNP
sites from tetraploid individuals. The different SATlotyper
methods were compared with the simulated data (Figure
8). Prior to analysis, noise from 0% to 10% was added to

the data, to account for erroneous SNP scores in the input
data.

Without noise all methods were able to predict the correct
set of haplotypes which were used in the simulation (Fig-
ure 8). Compared with the original simulation, the haplo-
type compositions of the phased genotypes were close to
the composition of the simulated genotypes (> 99% cor-
rectness). With noise added, Method 3 using bootstrap-
ping and optimisation gave the best results (Figure 8). It is
likely that the relatively small difference between Method
2 with bootstrapping and Method 1 without bootstrap-
ping (Figure 8) can be explained by the simulation.
Because the haplotypes are uniformly distributed, it is
very likely that – even in case of noise – all original haplo-
types are present in the first found haplotype inference.
Thus, an analysis of different distributions of haplotypes
in populations is still missing. In the case of real data we
would expect a larger difference between the applications
of Method 1 and Method 2.

The results obtained when Method 4 (Figure 8) was
applied suggest that for some purposes it could be suffi-
cient simply to score the haplotypes corresponding to
their frequencies in the phased genotypes for optimising
genotype inference. This suggests that data sets that are
time consuming to infer can be optimized by Method 4

Comparison of the experimental haplotype frequency with the bootstrapping score of the 9 common haplotypesFigure 11
Comparison of the experimental haplotype frequency with the bootstrapping score of the 9 common haplo-
types. The nine common haplotypes are taken from Figure 9. Haplotype frequency is drawn from Table 4. The bootstrapping 
score according to Additional file 1 is displayed in percent (100% corresponds to the sum of the bootstrapping scores of the 
nine common haplotypes). Haplotypes are valued and ordered according to bootstrapping scores.
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such that also time consuming bootstrapping can be
omitted.

SATlotyper was also applied to an experimental data set of
twelve unphased SNP markers, which were scored by
sequencing of the amplicons of a 500 bp-region at potato
locus BA213c14t7. As we have verified only one locus so
far, it is not possible to make a firm conclusion how rep-
resentative the data set of the BA213c14t7 locus is. Some
variation is expected between different loci with respect to
the quality of an amplicon [2] for direct sequencing and
whether the amplicon is representative for the genotype at
the amplified locus. The performance of the approach was
much higher with the experimental data than with simu-
lated data. Nevertheless, the running time increased expo-
nentially with the linearly increasing number of SNP sites
(Figure 10).

In addition to performance, the quality of the prediction
was evaluated by comparison of predicted haplotypes
with experimental haplotypes that were determined by
amplicon cloning and sequencing [2]. Unfortunately, the
experimental validation of haplotypes is time consuming
and expensive. Thus, only a subset of nineteen hetero-
zygous unphased individuals was available for the direct

comparison. Furthermore, it has to be taken into account
that the evaluation of predicted haplotypes based on com-
parison with experimentally determined haplotypes is
slightly restricted by the fact that the experimental haplo-
types are not error-free. In this study, new insights were
gained in the experimental set-up for haplotype inference
in autotetraploid species by molecular cloning and
sequencing of amplicons. In several cases, the observed
frequency of amplicon sequences deviated from the
expected frequency (0.25, 0.50 or 0.75). One reason could
be a difference in the G/C-content of the alleles resulting
in altered performances of the PCR-reaction [25,26].

Even slight differences in the initial PCR cycles are
enhanced further on in the downstream reactions. This
first comparison of computed with experimental haplo-
types gave promising results: nine of the ten experimental
haplotypes were also identified by SATlotyper prediction
out of the sub-population of nineteen individuals (Figure
9). With respect to the phased genotypes, the SATlotyper
analysis achieved a correctness of at least 90% (for 80% of
the individuals) compared with the experimental result
(Figure 12). With the exception of Method 1, all SATloty-
per methods gave similar results with this data set.

Correctness of computed phased genotypes compared to the experimental resultFigure 12
Correctness of computed phased genotypes compared to the experimental result. 100% is equivalent with the 
experimentally determined phased genotype. The correctness was calculated from the Hamming distance, as explained in the 
text. For individual B52 the experimental genotype model 1/1/8/8 (Table 5) was used for the comparison.
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Conclusion
The study demonstrates that HIPP can efficiently be
solved for data sets of unphased SNP sites from hetero-
zygous polyploids by a generalisation of the SAT approach
from [7]. Our results are encouraging for the future appli-
cation and further development of SATlotyper. Existing or
newly generated unphased SNP data can be analysed by
SATlotyper to infer haplotypes. Haplotype information
can be used instead of individual SNP sites in association
mapping that exploits the biodiversity in existing cultivars
and breeding lines [2]. Compared with methods based on
individual SNP sites, the haplotype mapping method sig-
nificantly improves the power and robustness of gene
mapping techniques [27] as there are fewer haplotypes
than SNP sites [2].

Availability and requirements
SATlotyper was developed in the scope of GABI (Genome
analysis of the plant biological system) projects and can
be downloaded from the SATlotyper project page [28] of
GabiPD, The GABI Primary Database [29]. The software is
distributed as a Java JAR file and requires Java Runtime
Environment 1.5.0 or higher. For the user's convenience,
the downloadable archive contains statically linked ver-
sions of MiniSat [11,12] and MiraXT [13]. The software is
accessed from command line. Under UNIX like systems
the program runs out of the box with MiniSat [11,12],
MiraXT [13] and the Sat4J solver [14]. Users with Micro-
soft® Windows are restricted on running the Sat4J solver.
SATlotyper is freeware for scientific use and is distributed
under the SATlotyper licence, which is also included in the
downloadable package.
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