The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 8
Back to Result List

Density distribution across the Alpine lithosphere constrained by 3-D gravity modelling and relation to seismicity and deformation

  • The Alpine orogen formed as a result of the collision between the Adriatic and European plates. Significant crustal heterogeneity exists within the region due to the long history of interplay between these plates, other continental and oceanic blocks in the region, and inherited crustal features from earlier orogenies. Deformation relating to the collision continues to the present day. Here, a seismically constrained, 3-D structural and density model of the lithosphere of the Alps and their respective forelands, derived from integrating numerous geoscientific datasets, was adjusted to match the observed gravity field. It is shown that the distribution of seismicity and deformation within the region correlates well to thickness and density changes within the crust, and that the present-day Adriatic crust is both thinner and denser (22.5 km, 2800 kg m(-3) ) than the European crust (27.5 km, 2750 kg m(-3)). Alpine crust derived from each respective plate is found to show the same trend, with zones of Adriatic provenance (Austro-AlpineThe Alpine orogen formed as a result of the collision between the Adriatic and European plates. Significant crustal heterogeneity exists within the region due to the long history of interplay between these plates, other continental and oceanic blocks in the region, and inherited crustal features from earlier orogenies. Deformation relating to the collision continues to the present day. Here, a seismically constrained, 3-D structural and density model of the lithosphere of the Alps and their respective forelands, derived from integrating numerous geoscientific datasets, was adjusted to match the observed gravity field. It is shown that the distribution of seismicity and deformation within the region correlates well to thickness and density changes within the crust, and that the present-day Adriatic crust is both thinner and denser (22.5 km, 2800 kg m(-3) ) than the European crust (27.5 km, 2750 kg m(-3)). Alpine crust derived from each respective plate is found to show the same trend, with zones of Adriatic provenance (Austro-Alpine unit and Southern Alps) found to be denser and those of European provenance (Helvetic zone and Tauern Window) to be less dense. This suggests that the respective plates and related terranes had similar crustal properties to the present-day ones prior to orogenesis. The model generated here is available for open-access use to further discussions about the crust in the region.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Cameron SpoonerORCiDGND, Magdalena Scheck-WenderothORCiDGND, Hans-Jürgen GötzeORCiDGND, Jörg EbbingORCiDGND, Gyoergy HetenyiORCiD
DOI:https://doi.org/10.5194/se-10-2073-2019
ISSN:1869-9510
ISSN:1869-9529
Title of parent work (English):Solid earth
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Creating corporation:AlpArray Working Grp
Release date:2020/10/04
Volume:10
Issue:6
Number of pages:16
First page:2073
Last Page:2088
Funding institution:Deutsche Forschungsgemeinschaft (DFG) part of AlpArray initiativeGerman Research Foundation (DFG)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
Open Access / Gold Open-Access
DOAJ gelistet
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.