• search hit 1 of 6
Back to Result List

Putative alternative translation start site-encoding nucleotides of CPR5 regulate growth and resistance

  • Background The Arabidopsis CONSTITUTIVE EXPRESSER of PATHOGENESIS-RELATED GENES 5 (CPR5) has recently been shown to play a role in gating as part of the nuclear pore complex (NPC). Mutations in CPR5 cause multiple defects, including aberrant trichomes, reduced ploidy levels, reduced growth and enhanced resistance to bacterial and fungal pathogens. The pleiotropic nature of cpr5 mutations implicates that the CPR5 protein affects multiple pathways. However, little is known about the structural features that allow CPR5 to affect the different pathways. Results Our in silico studies suggest that in addition to three clusters of putative nuclear localization signals and four or five transmembrane domains, CPR5 contains two putative alternative translation start sites. To test the role of the methionine-encoding nucleotides implicated in those sites, metCPR5 cDNAs, in which the relevant nucleotides were changed to encode glutamine, were fused to the CPR5 native promoter and the constructs transformed to cpr5-2 plants to complementBackground The Arabidopsis CONSTITUTIVE EXPRESSER of PATHOGENESIS-RELATED GENES 5 (CPR5) has recently been shown to play a role in gating as part of the nuclear pore complex (NPC). Mutations in CPR5 cause multiple defects, including aberrant trichomes, reduced ploidy levels, reduced growth and enhanced resistance to bacterial and fungal pathogens. The pleiotropic nature of cpr5 mutations implicates that the CPR5 protein affects multiple pathways. However, little is known about the structural features that allow CPR5 to affect the different pathways. Results Our in silico studies suggest that in addition to three clusters of putative nuclear localization signals and four or five transmembrane domains, CPR5 contains two putative alternative translation start sites. To test the role of the methionine-encoding nucleotides implicated in those sites, metCPR5 cDNAs, in which the relevant nucleotides were changed to encode glutamine, were fused to the CPR5 native promoter and the constructs transformed to cpr5-2 plants to complement cpr5-compromised phenotypes. The control and metCPR5 constructs were able to complement all cpr5 phenotypes, although the extent of complementation depended on the specific complementing plant lines. Remarkably, plants transformed with metCPR5 constructs showed larger leaves and displayed reduced resistance when challenged to Pseudomonas syringae pv Pst DC3000, as compared to control plants. Thus, the methionine-encoding nucleotides regulate growth and resistance. We propose that structural features of the CPR5 N-terminus are implicated in selective gating of proteins involved in regulating the balance between growth and resistance. Conclusion Plants need to carefully balance the amount of resources used for growth and resistance. The Arabidopsis CPR5 protein regulates plant growth and immunity. Here we show that N-terminal features of CPR5 are involved in the regulation of the balance between growth and resistance. These findings may benefit efforts to improve plant yield, while maintaining optimal levels of disease resistance.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Muhammad B. FaisalORCiD, Tsanko S. GechevORCiDGND, Bernd Müller-RöberORCiDGND, Paul P. DijkwelORCiD
DOI:https://doi.org/10.1186/s12870-020-02485-2
ISSN:1471-2229
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/32600419
Title of parent work (English):BMC plant biology
Publisher:BMC
Place of publishing:London
Publication type:Article
Language:English
Date of first publication:2020/06/29
Publication year:2020
Release date:2023/05/04
Tag:CPR5; arabidopsis thaliana; cell death; disease resistance; endoreduplication; plant growth
Volume:20
Issue:1
Number of pages:10
Funding institution:Higher Education Commission (HEC), Pakistan, scholarship; EUEuropean; Commission [612630, 739582, 664620]; European Regional Development Fund; through the Bulgarian "Science and Education for Smart Growth"; Operational Programme [BG05M2OP001-1.003-001-C01]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.