• search hit 9 of 28
Back to Result List

Quantitative relationship between infliximab exposure and inhibition of C-reactive protein synthesis to support inflammatory bowel disease management

  • Aim Quantitative and kinetic insights into the drug exposure-disease response relationship might enhance our knowledge on loss of response and support more effective monitoring of inflammatory activity by biomarkers in patients with inflammatory bowel disease (IBD) treated with infliximab (IFX). This study aimed to derive recommendations for dose adjustment and treatment optimisation based on mechanistic characterisation of the relationship between IFX serum concentration and C-reactive protein (CRP) concentration. <br /> Methods Data from an investigator-initiated trial included 121 patients with IBD during IFX maintenance treatment. Serum concentrations of IFX, antidrug antibodies (ADA), CRP, and disease-related covariates were determined at the mid-term and end of a dosing interval. Data were analysed using a pharmacometric nonlinear mixed-effects modelling approach. An IFX exposure-CRP model was generated and applied to evaluate dosing regimens to achieve CRP remission. <br /> Results The generated quantitative model showed thatAim Quantitative and kinetic insights into the drug exposure-disease response relationship might enhance our knowledge on loss of response and support more effective monitoring of inflammatory activity by biomarkers in patients with inflammatory bowel disease (IBD) treated with infliximab (IFX). This study aimed to derive recommendations for dose adjustment and treatment optimisation based on mechanistic characterisation of the relationship between IFX serum concentration and C-reactive protein (CRP) concentration. <br /> Methods Data from an investigator-initiated trial included 121 patients with IBD during IFX maintenance treatment. Serum concentrations of IFX, antidrug antibodies (ADA), CRP, and disease-related covariates were determined at the mid-term and end of a dosing interval. Data were analysed using a pharmacometric nonlinear mixed-effects modelling approach. An IFX exposure-CRP model was generated and applied to evaluate dosing regimens to achieve CRP remission. <br /> Results The generated quantitative model showed that IFX has the potential to inhibit up to 72% (9% relative standard error [RSE]) of CRP synthesis in a patient. IFX concentration leading to 90% of the maximum CRP synthesis inhibition was 18.4 mu g/mL (43% RSE). Presence of ADA was the most influential factor on IFX exposure. With standard dosing strategy, >= 55% of ADA+ patients experienced CRP nonremission. Shortening the dosing interval and co-therapy with immunomodulators were found to be the most beneficial strategies to maintain CRP remission. <br /> Conclusions With the generated model we could for the first time establish a robust relationship between IFX exposure and CRP synthesis inhibition, which could be utilised for treatment optimisation in IBD patients.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Ana-Marija GrisicORCiD, Alexander Eser, Wilhelm HuisingaORCiDGND, Walter Reinisch, Charlotte KloftORCiDGND
DOI:https://doi.org/10.1111/bcp.14648
ISSN:0306-5251
ISSN:1365-2125
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/33184852
Title of parent work (English):British journal of clinical pharmacology
Publisher:Wiley
Place of publishing:Hoboken
Publication type:Article
Language:English
Date of first publication:2020/11/12
Publication year:2020
Release date:2022/11/10
Tag:C‐ reactive protein remission; inflammatory bowel disease; infliximab dosing
Volume:87
Issue:5
Number of pages:11
First page:2374
Last Page:2384
Funding institution:Projekt DEAL
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.