• search hit 8 of 14
Back to Result List

Second-order coherence properties of amplified spontaneous emission from a high-power tapered superluminescent diode

  • We study the degree of second-order coherence of the emission of a high-power multi-quantum well superluminescent diode with a lateral tapered amplifier section with and without optical feedback. When operated in an external cavity, the degree of second-order coherence changed from the almost thermal case of g((2))(0)approximate to 1.9 towards the mostly coherent case of g((2)) (0) approximate to 1.2 when the injection current at the tapered section was increased. We found good agreement with semi-classical laser theory near and below threshold while above laser threshold a slightly higher g((2))(0) was observed. As a free running device, the superluminescent diode yielded more than 400 mW of optical output power with good spatial beam quality of M-slow(2) < 1.6. In this case, the degree of second-order coherence dropped only slightly from 1.9 at low powers to 1.6 at the maximum output power. To our knowledge, this is the first investigation of a high-power tapered superluminescent diode concerning the degree of second-orderWe study the degree of second-order coherence of the emission of a high-power multi-quantum well superluminescent diode with a lateral tapered amplifier section with and without optical feedback. When operated in an external cavity, the degree of second-order coherence changed from the almost thermal case of g((2))(0)approximate to 1.9 towards the mostly coherent case of g((2)) (0) approximate to 1.2 when the injection current at the tapered section was increased. We found good agreement with semi-classical laser theory near and below threshold while above laser threshold a slightly higher g((2))(0) was observed. As a free running device, the superluminescent diode yielded more than 400 mW of optical output power with good spatial beam quality of M-slow(2) < 1.6. In this case, the degree of second-order coherence dropped only slightly from 1.9 at low powers to 1.6 at the maximum output power. To our knowledge, this is the first investigation of a high-power tapered superluminescent diode concerning the degree of second-order coherence. Such a device might be useful for real-world applications probing the second order coherence function, such as ghost imaging.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jan KietheGND, Axel HeuerORCiDGND, Andreas JechowORCiDGND
DOI:https://doi.org/10.1088/1612-202X/aa772c
ISSN:1612-2011
ISSN:1612-202X
Title of parent work (English):Laser physics letters
Publisher:IOP Publ. Ltd.
Place of publishing:Bristol
Publication type:Article
Language:English
Date of first publication:2017/07/20
Publication year:2017
Release date:2022/04/12
Tag:incoherent light; photon statistics; superluminescent diodes
Volume:14
Number of pages:4
Funding institution:German Federal Ministry for Education and Research (BMBF), Germany [13N11131]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Publishing method:Open Access / Bronze Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.