The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 155
Back to Result List

A Fast-Response Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH4 and CO2 dissolved in water

  • Biogenic greenhouse gas emissions, e.g., of methane (CH4) and carbon dioxide (CO2) from inland waters, contribute substantially to global warming. In aquatic systems, dissolved greenhouse gases are highly heterogeneous in both space and time. To better understand the biological and physical processes that affect sources and sinks of both CH4 and CO2, their dissolved concentrations need to be measured with high spatial and temporal resolution. To achieve this goal, we developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved CH4 and CO2 concentrations at the water surface and in the water column. FaRAGE can achieve an exceptionally short response time (t(95%) = 12 s when including the response time of the gas analyzer) while retaining an equilibration ratio of 62.6% and a measurement accuracy of 0.5% for CH4. A similar performance was observed for dissolved CO2 (t(95%) = 10 s, equilibration ratio 67.1 %). An equilibration ratio as high as 91.8% can be reached at the cost of aBiogenic greenhouse gas emissions, e.g., of methane (CH4) and carbon dioxide (CO2) from inland waters, contribute substantially to global warming. In aquatic systems, dissolved greenhouse gases are highly heterogeneous in both space and time. To better understand the biological and physical processes that affect sources and sinks of both CH4 and CO2, their dissolved concentrations need to be measured with high spatial and temporal resolution. To achieve this goal, we developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved CH4 and CO2 concentrations at the water surface and in the water column. FaRAGE can achieve an exceptionally short response time (t(95%) = 12 s when including the response time of the gas analyzer) while retaining an equilibration ratio of 62.6% and a measurement accuracy of 0.5% for CH4. A similar performance was observed for dissolved CO2 (t(95%) = 10 s, equilibration ratio 67.1 %). An equilibration ratio as high as 91.8% can be reached at the cost of a slightly increased response time (16 s). The FaRAGE is capable of continuously measuring dissolved CO2 and CH4 concentrations in the nM-to-submM (10(-9)-10(-3) mol L-1) range with a detection limit of subnM (10(-10) mol L-1), when coupling with a cavity ring-down greenhouse gas analyzer (Picarro GasScouter). FaRAGE allows for the possibility of mapping dissolved concentration in a "quasi" three-dimensional manner in lakes and provides an inexpensive alternative to other commercial gas equilibrators. It is simple to operate and suitable for continuous monitoring with a strong tolerance for suspended particles. While the FaRAGE is developed for inland waters, it can be also applied to ocean waters by tuning the gas-water mixing ratio. The FaRAGE is easily adapted to suit other gas analyzers expanding the range of potential applications, including nitrous oxide and isotopic composition of the gases.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Shangbin Xiao, Liu LiuORCiD, Wei WangORCiD, Andreas LorkeORCiDGND, Jason Nicholas WoodhouseORCiD, Hans-Peter GrossartORCiDGND
DOI:https://doi.org/10.5194/hess-24-3871-2020
ISSN:1027-5606
ISSN:1607-7938
Title of parent work (English):Hydrology and earth system sciences : HESS
Publisher:European Geosciences Union (EGU) ; Copernicus
Place of publishing:Munich
Publication type:Article
Language:English
Date of first publication:2020/07/30
Publication year:2020
Release date:2023/12/14
Volume:24
Issue:7
Number of pages:10
First page:3871
Last Page:3880
Funding institution:National Natural Science Foundation of ChinaNational Natural Science; Foundation of China (NSFC) [51979148, 91647207]; German Research; FoundationGerman Research Foundation (DFG) [DFG GR1540/21-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.