• Treffer 1 von 1
Zurück zur Trefferliste

Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness

  • Perovskite solar cells (PSCs) are one of the main research topics of the photovoltaic community; with efficiencies now reaching up to 24%, PSCs are on the way to catching up with classical inorganic solar cells. However, PSCs have not yet reached their full potential. In fact, their efficiency is still limited by nonradiative recombination, mainly via trap-states and by losses due to the poor transport properties of the commonly used transport layers (TLs). Indeed, state-of-the-art TLs (especially if organic) suffer from rather low mobilities, typically within 10(-5) and 10(-2) cm(-2) V-1 s(-1), when compared to the high mobilities, 1-10 cm(-2) V-1 s(-1), measured for perovskites. This work presents a comprehensive analysis of the effect of the mobility, thickness, and doping density of the transport layers based on combined experimental and modeling results of two sets of devices made of a solution-processed high-performing triple-cation (PCE approximate to 20%). The results are also cross-checked on vacuum-processed MAPbI(3)Perovskite solar cells (PSCs) are one of the main research topics of the photovoltaic community; with efficiencies now reaching up to 24%, PSCs are on the way to catching up with classical inorganic solar cells. However, PSCs have not yet reached their full potential. In fact, their efficiency is still limited by nonradiative recombination, mainly via trap-states and by losses due to the poor transport properties of the commonly used transport layers (TLs). Indeed, state-of-the-art TLs (especially if organic) suffer from rather low mobilities, typically within 10(-5) and 10(-2) cm(-2) V-1 s(-1), when compared to the high mobilities, 1-10 cm(-2) V-1 s(-1), measured for perovskites. This work presents a comprehensive analysis of the effect of the mobility, thickness, and doping density of the transport layers based on combined experimental and modeling results of two sets of devices made of a solution-processed high-performing triple-cation (PCE approximate to 20%). The results are also cross-checked on vacuum-processed MAPbI(3) devices. From this analysis, general guidelines on how to optimize a TL are introduced and especially a new and simple formula to easily calculate the amount of doping necessary to counterbalance the low mobility of the TLs.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Vincent M. Le Corre, Martin StolterfohtORCiD, Lorena Perdigon ToroORCiD, Markus Feuerstein, Christian Michael WolffORCiDGND, Lidon Gil-EscrigORCiD, Henk J. BolinkORCiD, Dieter NeherORCiDGND, L. Jan Anton KosterORCiDGND
DOI:https://doi.org/10.1021/acsaem.9b00856
ISSN:2574-0962
Titel des übergeordneten Werks (Englisch):ACS Applied Energy Materials
Verlag:American Chemical Society
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:30.07.2019
Erscheinungsjahr:2019
Datum der Freischaltung:26.11.2020
Freies Schlagwort / Tag:charge transport; conductivity; doping; perovskite solar cells; transport layers
Band:2
Ausgabe:9
Seitenanzahl:15
Erste Seite:6280
Letzte Seite:6287
Fördernde Institution:STW/NWOTechnologiestichting STWNetherlands Organization for Scientific Research (NWO) [VIDI 13476]; HyPerCells (graduate school of the Potsdam University ); HyPerCells (HZB); Spanish Ministry of Economy and Competitiveness (MINECO) [MAT2017-88821-R]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.