The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 15 of 56
Back to Result List

Infrared outbursts as potential tracers of common-envelope events in high-mass X-ray binary formation

  • Context. Classic massive binary evolutionary scenarios predict that a transitional common-envelope (CE) phase could be preceded as well as succeeded by the evolutionary stage when a binary consists of a compact object and a massive star, that is, a high-mass X-ray binary (HMXB). The observational manifestations of common envelope are poorly constrained. We speculate that its ejection might be observed in some cases as a transient event at mid-infrared (IR) wavelengths. Aims. We estimate the expected numbers of CE ejection events and HMXBs per star formation unit rate, and compare these theoretical estimates with observations. Methods. We compiled a list of 85 mid-IR transients of uncertain nature detected by the Spitzer Infrared Intensive Transients Survey and searched for their associations with X-ray, optical, and UV sources. Results. Confirming our theoretical estimates, we find that only one potential HMXB may be plausibly associated with an IR-transient and tentatively propose that X-ray source NGC4490-X40 could be a precursor toContext. Classic massive binary evolutionary scenarios predict that a transitional common-envelope (CE) phase could be preceded as well as succeeded by the evolutionary stage when a binary consists of a compact object and a massive star, that is, a high-mass X-ray binary (HMXB). The observational manifestations of common envelope are poorly constrained. We speculate that its ejection might be observed in some cases as a transient event at mid-infrared (IR) wavelengths. Aims. We estimate the expected numbers of CE ejection events and HMXBs per star formation unit rate, and compare these theoretical estimates with observations. Methods. We compiled a list of 85 mid-IR transients of uncertain nature detected by the Spitzer Infrared Intensive Transients Survey and searched for their associations with X-ray, optical, and UV sources. Results. Confirming our theoretical estimates, we find that only one potential HMXB may be plausibly associated with an IR-transient and tentatively propose that X-ray source NGC4490-X40 could be a precursor to the SPIRITS 16az event. Among other interesting sources, we suggest that the supernova remnant candidate [BWL2012] 063 might be associated with SPIRITS 16ajc. We also find that two SPIRITS events are likely associated with novae, and seven have potential optical counterparts. Conclusions. The massive binary evolutionary scenarios that involve CE events do not contradict currently available observations of IR transients and HMXBs in star-forming galaxies.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Lida OskinovaORCiDGND, Tomasz Bulik, Ada Nebot Gomez-Moran
DOI:https://doi.org/10.1051/0004-6361/201832925
ISSN:0004-6361
ISSN:1432-0746
Title of parent work (English):Astronomy and astrophysics : an international weekly journal
Publisher:EDP Sciences
Place of publishing:Les Ulis
Publication type:Article
Language:English
Date of first publication:2018/06/04
Publication year:2018
Release date:2021/11/22
Tag:X-rays: binaries; infrared: galaxies; infrared: general; stars: massive
Volume:613
Number of pages:7
Funding institution:Programme National Hautes Energies (PNHE) [994584]; Integrated Activities in the High Energy Astrophysics Domain project; DLRHelmholtz AssociationGerman Aerospace Centre (DLR) [50 OR 1612]; FNPFoundation for Polish Science [TEAM/2016-3/19]; Kavli Institute for Theoretical Physics, University of California
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Publishing method:Open Access / Bronze Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.