• search hit 16 of 165
Back to Result List

Ontogeny of the electric organ discharge and of the papillae of the electrocytes in the weakly electric fish Campylomormyrus rhynchophorus (Teleostei: Mormyridae)

  • The electric organ of the mormyrid weakly electric fish,Campylomormyrus rhynchophorus(Boulenger, 1898), undergoes changes in both the electric organ discharge (EOD) and the light and electron microscopic morphology as the fish mature from the juvenile to the adult form. Of particular interest was the appearance of papillae, surface specializations of the uninnervated anterior face of the electrocyte, which have been hypothesized to increase the duration of the EOD. In a 24.5 mm long juvenile the adult electric organ (EO) was not yet functional, and the electrocytes lacked papillae. A 40 mm long juvenile, which produced a short biphasic EOD of 1.3 ms duration, shows small papillae (average area 136 mu m(2)). In contrast, the EOD of a 79 mm long juvenile was triphasic. The large increase in duration of the EOD to 23.2 ms was accompanied by a small change in size of the papillae (average area 159 mu m(2)). Similarly, a 150 mm long adult produced a triphasic EOD of comparable duration to the younger stage (24.7 ms) but featured aThe electric organ of the mormyrid weakly electric fish,Campylomormyrus rhynchophorus(Boulenger, 1898), undergoes changes in both the electric organ discharge (EOD) and the light and electron microscopic morphology as the fish mature from the juvenile to the adult form. Of particular interest was the appearance of papillae, surface specializations of the uninnervated anterior face of the electrocyte, which have been hypothesized to increase the duration of the EOD. In a 24.5 mm long juvenile the adult electric organ (EO) was not yet functional, and the electrocytes lacked papillae. A 40 mm long juvenile, which produced a short biphasic EOD of 1.3 ms duration, shows small papillae (average area 136 mu m(2)). In contrast, the EOD of a 79 mm long juvenile was triphasic. The large increase in duration of the EOD to 23.2 ms was accompanied by a small change in size of the papillae (average area 159 mu m(2)). Similarly, a 150 mm long adult produced a triphasic EOD of comparable duration to the younger stage (24.7 ms) but featured a prominent increase in size of the papillae (average area 402 mu m(2)). Thus, there was no linear correlation between EOD duration and papillary size. The most prominent ultrastructural change was at the level of the myofilaments, which regularly extended into the papillae, only in the oldest specimen-probably serving a supporting function. Physiological mechanisms, like gene expression levels, as demonstrated in someCampylomormyrusspecies, might be more important concerning the duration of the EOD.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Yevheniia KorniienkoGND, Ralph TiedemannORCiDGND, Marianne Vater, Frank KirschbaumORCiDGND
DOI:https://doi.org/10.1002/cne.25003
ISSN:0021-9967
ISSN:1096-9861
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/32785950
Title of parent work (English):The journal of comparative neurology
Publisher:Wiley
Place of publishing:Hoboken
Publication type:Article
Language:English
Date of first publication:2020/08/12
Publication year:2020
Release date:2023/03/23
Tag:Campylomormyrus; electric organ discharge; electrocyte ontogeny; electrocyte ultrastructure; papillae
Volume:529
Issue:5
Number of pages:14
First page:1052
Last Page:1065
Funding institution:Friedrich Naumann Foundation for Freedom
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.