• search hit 2 of 4
Back to Result List

Electrodynamics of turbulent fluids with fluctuating electric conductivity

  • Consequences of fluctuating microscopic conductivity in mean-field electrodynamics of turbulent fluids are formulated and discussed. If the conductivity fluctuations are assumed to be uncorrelated with the velocity fluctuations then only the turbulence-originated magnetic diffusivity of the fluid is reduced and the decay time of a large-scale magnetic field or the cycle times of oscillating turbulent dynamo models are increased. If, however, the fluctuations of conductivity and flow in a certain well-defined direction are correlated, an additional diamagnetic pumping effect results, transporting the magnetic field in the opposite direction to the diffusivity flux vector <eta'u'>. In the presence of global rotation, even for homogeneous turbulence fields, an alpha effect appears. If the characteristic values of the outer core of the Earth or the solar convection zone are applied, the dynamo number of the new alpha effect does not reach supercritical values to operate as an alpha(2)-dynamo but oscillating alpha Omega-dynamos withConsequences of fluctuating microscopic conductivity in mean-field electrodynamics of turbulent fluids are formulated and discussed. If the conductivity fluctuations are assumed to be uncorrelated with the velocity fluctuations then only the turbulence-originated magnetic diffusivity of the fluid is reduced and the decay time of a large-scale magnetic field or the cycle times of oscillating turbulent dynamo models are increased. If, however, the fluctuations of conductivity and flow in a certain well-defined direction are correlated, an additional diamagnetic pumping effect results, transporting the magnetic field in the opposite direction to the diffusivity flux vector <eta'u'>. In the presence of global rotation, even for homogeneous turbulence fields, an alpha effect appears. If the characteristic values of the outer core of the Earth or the solar convection zone are applied, the dynamo number of the new alpha effect does not reach supercritical values to operate as an alpha(2)-dynamo but oscillating alpha Omega-dynamos with differential rotation are not excluded.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Günther RüdigerORCiDGND, Manfred KükerORCiD, Petri J. KäpyläORCiD
DOI:https://doi.org/10.1017/S0022377820000665
ISSN:0022-3778
ISSN:1469-7807
Title of parent work (English):Journal of plasma physics
Publisher:Cambridge Univ. Press
Place of publishing:London
Publication type:Article
Language:English
Date of first publication:2020/06/22
Publication year:2020
Release date:2023/11/10
Tag:astrophysical plasmas; plasma flows
Volume:86
Issue:3
Article number:905860318
Number of pages:14
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.