• Treffer 5 von 11
Zurück zur Trefferliste

Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells

  • Designing gentle sinusoidal nanotextures enables the realization of high-efficiency perovskite-silicon solar cells <br /> Perovskite-silicon tandem solar cells offer the possibility of overcoming the power conversion efficiency limit of conventional silicon solar cells. Various textured tandem devices have been presented aiming at improved optical performance, but optimizing film growth on surface-textured wafers remains challenging. Here we present perovskite-silicon tandem solar cells with periodic nanotextures that offer various advantages without compromising the material quality of solution-processed perovskite layers. We show a reduction in reflection losses in comparison to planar tandems, with the new devices being less sensitive to deviations from optimum layer thicknesses. The nanotextures also enable a greatly increased fabrication yield from 50% to 95%. Moreover, the open-circuit voltage is improved by 15 mV due to the enhanced optoelectronic properties of the perovskite top cell. Our optically advanced rear reflector withDesigning gentle sinusoidal nanotextures enables the realization of high-efficiency perovskite-silicon solar cells <br /> Perovskite-silicon tandem solar cells offer the possibility of overcoming the power conversion efficiency limit of conventional silicon solar cells. Various textured tandem devices have been presented aiming at improved optical performance, but optimizing film growth on surface-textured wafers remains challenging. Here we present perovskite-silicon tandem solar cells with periodic nanotextures that offer various advantages without compromising the material quality of solution-processed perovskite layers. We show a reduction in reflection losses in comparison to planar tandems, with the new devices being less sensitive to deviations from optimum layer thicknesses. The nanotextures also enable a greatly increased fabrication yield from 50% to 95%. Moreover, the open-circuit voltage is improved by 15 mV due to the enhanced optoelectronic properties of the perovskite top cell. Our optically advanced rear reflector with a dielectric buffer layer results in reduced parasitic absorption at near-infrared wavelengths. As a result, we demonstrate a certified power conversion efficiency of 29.80%.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Philipp TockhornORCiDGND, Johannes SutterORCiD, Alexandros Cruz BournazouORCiDGND, Philipp WagnerORCiDGND, Klaus JägerORCiDGND, Danbi Yoo, Felix LangORCiDGND, Max GrischekORCiD, Bor LiORCiD, Jinzhao LiORCiD, Oleksandra ShargaievaORCiDGND, Eva UngerORCiD, Amran Al-AshouriORCiDGND, Eike KöhnenORCiDGND, Martin StolterfohtORCiD, Dieter NeherORCiDGND, Rutger SchlatmannORCiD, Bernd RechORCiDGND, Bernd StannowskiORCiD, Steve AlbrechtORCiDGND, Christiane BeckerORCiD
DOI:https://doi.org/10.1038/s41565-022-01228-8
ISSN:1748-3387
ISSN:1748-3395
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/36280763
Titel des übergeordneten Werks (Englisch):Nature nanotechnology
Verlag:Nature Publishing Group
Verlagsort:London [u.a.]
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:24.10.2022
Erscheinungsjahr:2022
Datum der Freischaltung:17.11.2023
Band:17
Ausgabe:11
Seitenanzahl:11
Erste Seite:1214
Letzte Seite:1221
Fördernde Institution:German Federal Ministry for Education and Research (BMBF) [03SF0631,; 01IO1806]; German Federal Ministry for Economic Affairs (BMWi); [0324037C, 03EE1086C]; HyperCells Graduate School; HI-SCORE Research; School; HySPRINT Helmholtz Innovation Lab; Helmholtz Association within; the EU-Partnering project TAPAS (Tandem Perovskite and Silicon Solar; Cells Advanced Optoelectrical Characterization, Modelling and Stability,; S.A.); Helmholtz Excellence Network SolarMath, a strategic collaboration; of MATH+; Helmholtz-Zentrum Berlin [ExNet-0042-Phase-2-3]; Deutsche; Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy; [EXC-2046/1, 390685689, MATH+ AA4-6]; DFG [423749265-SPP 2196]; Federal; Ministry for Economic Affairs and Energy (P3T-HOPE) [03EE1017C]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer Review:Referiert
Publikationsweg:Open Access / Hybrid Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.