The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 78 of 194
Back to Result List

Suppression of the TeV Pair-beam-Plasma Instability by a Tangled Weak Intergalactic Magnetic Field

  • We study the effect of a tangled sub-fG level intergalactic magnetic field (IGMF) on the electrostatic instability of a blazar-induced pair beam. Sufficiently strong IGMF may significantly deflect the TeV pair beams, which would reduce the flux of secondary cascade emission below the observational limits. A similar flux reduction may result from the electrostatic beam-plasma instability, which operates the best in the absence of IGMF. Considering IGMF with correlation lengths smaller than a kiloparsec, we find that weak magnetic fields increase the transverse momentum of the pair-beam particles, which dramatically reduces the linear growth rate of the electrostatic instability and hence the energy-loss rate of the pair beam. We show that the beam-plasma instability is eliminated as an effective energy-loss agent at a field strength three orders of magnitude below that needed to suppress the secondary cascade emission by magnetic deflection. For intermediate-strength IGMF, we do not know a viable process to explain the observed absenceWe study the effect of a tangled sub-fG level intergalactic magnetic field (IGMF) on the electrostatic instability of a blazar-induced pair beam. Sufficiently strong IGMF may significantly deflect the TeV pair beams, which would reduce the flux of secondary cascade emission below the observational limits. A similar flux reduction may result from the electrostatic beam-plasma instability, which operates the best in the absence of IGMF. Considering IGMF with correlation lengths smaller than a kiloparsec, we find that weak magnetic fields increase the transverse momentum of the pair-beam particles, which dramatically reduces the linear growth rate of the electrostatic instability and hence the energy-loss rate of the pair beam. We show that the beam-plasma instability is eliminated as an effective energy-loss agent at a field strength three orders of magnitude below that needed to suppress the secondary cascade emission by magnetic deflection. For intermediate-strength IGMF, we do not know a viable process to explain the observed absence of GeV-scale cascade emission.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Mahmoud AlawashraGND, Martin PohlORCiDGND
DOI:https://doi.org/10.3847/1538-4357/ac5a4b
ISSN:0004-637X
ISSN:1538-4357
Title of parent work (English):The astrophysical journal : an international review of spectroscopy and astronomical physics
Publisher:IOP Publ. Ltd.
Place of publishing:Bristol
Publication type:Article
Language:English
Date of first publication:2022/04/13
Publication year:2022
Release date:2024/01/03
Volume:929
Issue:1
Article number:67
Number of pages:8
Funding institution:Initiative and Networking Fund of the Helmholtz Association
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
DOAJ gelistet
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.