• Treffer 73 von 519
Zurück zur Trefferliste

Elliptic complexes of pseudodifferential operators on manifolds with edges

  • On a compact closed manifold with edges live pseudodifferential operators which are block matrices of operators with additional edge conditions like boundary conditions in boundary value problems. They include Green, trace and potential operators along the edges, act in a kind of Sobolev spaces and form an algebra with a wealthy symbolic structure. We consider complexes of Fréchet spaces whose differentials are given by operators in this algebra. Since the algebra in question is a microlocalization of the Lie algebra of typical vector fields on a manifold with edges, such complexes are of great geometric interest. In particular, the de Rham and Dolbeault complexes on manifolds with edges fit into this framework. To each complex there correspond two sequences of symbols, one of the two controls the interior ellipticity while the other sequence controls the ellipticity at the edges. The elliptic complexes prove to be Fredholm, i.e., have a finite-dimensional cohomology. Using specific tools in the algebra of pseudodifferential operatorsOn a compact closed manifold with edges live pseudodifferential operators which are block matrices of operators with additional edge conditions like boundary conditions in boundary value problems. They include Green, trace and potential operators along the edges, act in a kind of Sobolev spaces and form an algebra with a wealthy symbolic structure. We consider complexes of Fréchet spaces whose differentials are given by operators in this algebra. Since the algebra in question is a microlocalization of the Lie algebra of typical vector fields on a manifold with edges, such complexes are of great geometric interest. In particular, the de Rham and Dolbeault complexes on manifolds with edges fit into this framework. To each complex there correspond two sequences of symbols, one of the two controls the interior ellipticity while the other sequence controls the ellipticity at the edges. The elliptic complexes prove to be Fredholm, i.e., have a finite-dimensional cohomology. Using specific tools in the algebra of pseudodifferential operators we develop a Hodge theory for elliptic complexes and outline a few applications thereof.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Bert-Wolfgang SchulzeGND, Nikolai Nikolaevich TarkhanovORCiDGND
URN:urn:nbn:de:kobv:517-opus-25257
Schriftenreihe (Bandnummer):Preprint ((1998) 14)
Publikationstyp:Preprint
Sprache:Englisch
Erscheinungsjahr:1998
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:30.10.2008
Freies Schlagwort / Tag:Hodge theory; elliptic complexes; manifolds with singularities; pseudodifferential operators
RVK - Regensburger Verbundklassifikation:SI 990
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Sammlung(en):Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis
Universität Potsdam / Schriftenreihen / Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis / 1998
Lizenz (Deutsch):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Externe Anmerkung:
Die Printversion kann in der Universitätsbibliothek Potsdam eingesehen werden:
Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis, 1997-

Die Online-Fassung wird auf der Homepage des Instituts für Mathematik veröffentlicht.

Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.