## Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partielle Differentialgleichungen und Komplexe Analysis

### Refine

#### Year of publication

#### Keywords

- elliptic operators (9)
- boundary value problems (8)
- index (8)
- K-theory (7)
- manifolds with singularities (6)
- pseudodifferential operators (6)
- relative index (6)
- Atiyah-Patodi-Singer theory (5)
- Fredholm property (5)
- index theory (5)

On a method for solution of the ordinary differential equations connected with Huygens' equations
(2010)

We construct elliptic elements in the algebra of (classical pseudo-differential) operators on a manifold M with conical singularities. The ellipticity of any such operator A refers to a pair of principal symbols (σ0, σ1) where σ0 is the standard (degenerate) homogeneous principal symbol, and σ1 is the so-called conormal symbol, depending on the complex Mellin covariable z. The conormal symbol, responsible for the conical singularity, is operator-valued and acts in Sobolev spaces on the base X of the cone. The σ1-ellipticity is a bijectivity condition for all z of real part (n + 1)/2 − γ, n = dimX, for some weight γ. In general, we have to rule out a discrete set of exceptional weights that depends on A. We show that for every operator A which is elliptic with respect to σ0, and for any real weight γ there is a smoothing Mellin operator F in the cone algebra such that A + F is elliptic including σ1. Moreover, we apply the results to ellipticity and index of (operator-valued) edge symbols from the calculus on manifolds with edges.

The Cauchy problem of the vacuum Einstein's equations aims to find a semimetric g(αβ) of a spacetime with vanishing Ricci curvature Rα,β and prescribed initial data. Under the harmonic gauge condition, the equations Rα,β = 0 are transferred into a system of quasi-linear wave equations which are called the reduced Einstein equations. The initial data for Einstein's equations are a proper Riemannian metric h(αβ) and a second fundamental form K(αβ). A necessary condition for the reduced Einstein equation to satisfy the vacuum equations is that the initial data satisfy Einstein constraint equations. Hence the data (h(αβ),K(αβ)) cannot serve as initial data for the reduced Einstein equations. Previous results in the case of asymptotically flat spacetimes provide a solution to the constraint equations in one type of Sobolev spaces, while initial data for the evolution equations belong to a different type of Sobolev spaces. The goal of our work is to resolve this incompatibility and to show that under the harmonic gauge the vacuum Einstein equations are well-posed in one type of Sobolev spaces.

We give a survey on the calculus of (pseudo-differential) boundary value problems with the transmision property at the boundary, and ellipticity in the Shapiro-Lopatinskij sense. Apart from the original results of the work of Boutet de Monvel we present an approach based on the ideas of the edge calculus. In a final section we introduce symbols with the anti-transmission property.

We give a brief survey on some new developments on elliptic operators on manifolds with polyhedral singularities. The material essentially corresponds to a talk given by the author during the Conference “Elliptic and Hyperbolic Equations on Singular Spaces”, October 27 - 31, 2008, at the MSRI, University of Berkeley.

We prove a local in time existence and uniqueness theorem of classical solutions of the coupled Einstein{Euler system, and therefore establish the well posedness of this system. We use the condition that the energy density might vanish or tends to zero at infinity and that the pressure is a certain function of the energy density, conditions which are used to describe simplified stellar models. In order to achieve our goals we are enforced, by the complexity of the problem, to deal with these equations in a new type of weighted Sobolev spaces of fractional order. Beside their construction, we develop tools for PDEs and techniques for hyperbolic and elliptic equations in these spaces. The well posedness is obtained in these spaces.

We consider a mixed problem for a degenerate differentialoperator equation of higher order. We establish some embedding theorems in weighted Sobolev spaces and show existence and uniqueness of the generalized solution of this problem. We also give a description of the spectrum for the corresponding operator.

The ellipticity of boundary value problems on a smooth manifold with boundary relies on a two-component principal symbolic structure (σψ; σ∂), consisting of interior and boundary symbols. In the case of a smooth edge on manifolds with boundary we have a third symbolic component, namely the edge symbol σ∧, referring to extra conditions on the edge, analogously as boundary conditions. Apart from such conditions in integral form' there may exist singular trace conditions, investigated in [6] on closed' manifolds with edge. Here we concentrate on the phenomena in combination with boundary conditions and edge problem.