Refine
Year of publication
Document Type
- Preprint (88)
- Article (40)
- Monograph/Edited Volume (27)
- Review (1)
Language
- English (156)
Keywords
- index (9)
- manifolds with singularities (6)
- Fredholm property (5)
- Toeplitz operators (5)
- Cauchy problem (4)
- Hodge theory (4)
- Navier-Stokes equations (4)
- pseudodifferential operators (4)
- star product (4)
- 'eta' invariant (3)
In order to characterise the C*-algebra generated by the singular Bochner-Martinelli integral over a smooth closed hypersurfaces in Cn, we compute its principal symbol. We show then that the Szegö projection belongs to the strong closure of the algebra generated by the singular Bochner-Martinelli integral.
We prove the existence of a limit in Hm(D) of iterations of a double layer potential constructed from the Hodge parametrix on a smooth compact manifold with boundary, X, and a crack S ⊂ ∂D, D being a domain in X. Using this result we obtain formulas for Sobolev solutions to the Cauchy problem in D with data on S, for an elliptic operator A of order m ≥ 1, whenever these solutions exist. This representation involves the sum of a series whose terms are iterations of the double layer potential. A similar regularisation is constructed also for a mixed problem in D.
The aim of this book is to develop the Lefschetz fixed point theory for elliptic complexes of pseudodifferential operators on manifolds with edges. The general Lefschetz theory contains the index theory as a special case, while the case to be studied is much more easier than the index problem. The main topics are: - The calculus of pseudodifferential operators on manifolds with edges, especially symbol structures (inner as well as edge symbols). - The concept of ellipticity, parametrix constructions, elliptic regularity in Sobolev spaces. - Hodge theory for elliptic complexes of pseudodifferential operators on manifolds with edges. - Development of the algebraic constructions for these complexes, such as homotopy, tensor products, duality. - A generalization of the fixed point formula of Atiyah and Bott for the case of simple fixed points. - Development of the fixed point formula also in the case of non-simple fixed points, provided that the complex consists of diferential operarators only. - Investigation of geometric complexes (such as, for instance, the de Rham complex and the Dolbeault complex). Results in this direction are desirable because of both purely mathe matical reasons and applications in natural sciences.
The paper is devoted to pseudodifferential boundary value problems in domains with singular points on the boundary. The tangent cone at a singular point is allowed to degenerate. In particular, the boundary may rotate and oscillate in a neighbourhood of such a point. We show a criterion for the Fredholm property of a boundary value problem and derive estimates of solutions close to singular points.
On a compact closed manifold with edges live pseudodifferential operators which are block matrices of operators with additional edge conditions like boundary conditions in boundary value problems. They include Green, trace and potential operators along the edges, act in a kind of Sobolev spaces and form an algebra with a wealthy symbolic structure. We consider complexes of Fréchet spaces whose differentials are given by operators in this algebra. Since the algebra in question is a microlocalization of the Lie algebra of typical vector fields on a manifold with edges, such complexes are of great geometric interest. In particular, the de Rham and Dolbeault complexes on manifolds with edges fit into this framework. To each complex there correspond two sequences of symbols, one of the two controls the interior ellipticity while the other sequence controls the ellipticity at the edges. The elliptic complexes prove to be Fredholm, i.e., have a finite-dimensional cohomology. Using specific tools in the algebra of pseudodifferential operators we develop a Hodge theory for elliptic complexes and outline a few applications thereof.
The paper is devoted to pseudodifferential boundary value problems in domains with cuspidal wedges. Concerning the geometry we even admit a more general behaviour, namely oscillating cuspidal wedges. We show a criterion for the Fredholm property of a boundary value problem and derive estimates of solutions close to edges.
We prove a theorem on analytic representation of integrable CR functions on hypersurfaces with singular points. Moreover, the behaviour of representing analytic functions near singular points is investigated. We are aimed at explaining the new effect caused by the presence of a singularity rather than at treating the problem in full generality.