### Refine

#### Year of publication

#### Document Type

- Preprint (88)
- Article (31)
- Monograph/Edited Volume (27)

#### Keywords

- index (8)
- manifolds with singularities (6)
- Fredholm property (5)
- Toeplitz operators (5)
- pseudodifferential operators (4)
- 'eta' invariant (3)
- Cauchy problem (3)
- Dirichlet to Neumann operator (3)
- Hodge theory (3)
- boundary value problems (3)

In order to characterise the C*-algebra generated by the singular Bochner-Martinelli integral over a smooth closed hypersurfaces in Cn, we compute its principal symbol. We show then that the Szegö projection belongs to the strong closure of the algebra generated by the singular Bochner-Martinelli integral.

For a sequence of Hilbert spaces and continuous linear operators the curvature is defined to be the composition of any two consecutive operators. This is modeled on the de Rham resolution of a connection on a module over an algebra. Of particular interest are those sequences for which the curvature is "small" at each step, e.g., belongs to a fixed operator ideal. In this context we elaborate the theory of Fredholm sequences and show how to introduce the Lefschetz number.

We consider the Dirichlet, Neumann and Zaremba problems for harmonic functions in a bounded plane domain with nonsmooth boundary. The boundary curve belongs to one of the following three classes: sectorial curves, logarithmic spirals and spirals of power type. To study the problem we apply a familiar method of Vekua-Muskhelishvili which consists in using a conformal mapping of the unit disk onto the domain to pull back the problem to a boundary problem for harmonic functions in the disk. This latter is reduced in turn to a Toeplitz operator equation on the unit circle with symbol bearing discontinuities of second kind. We develop a constructive invertibility theory for Toeplitz operators and thus derive solvability conditions as well as explicit formulas for solutions.

On completeness of root functions of Sturm-Liouville problems with discontinuous boundary operators
(2012)

We consider a Sturm-Liouville boundary value problem in a bounded domain D of R^n. By this is meant that the differential equation is given by a second order elliptic operator of divergent form in D and the boundary conditions are of Robin type on bD. The first order term of the boundary operator is the oblique derivative whose coefficients bear discontinuities of the first kind. Applying the method of weak perturbation of compact self-adjoint operators and the method of rays of minimal growth, we prove the completeness of root functions related to the boundary value problem in Lebesgue and Sobolev spaces of various types.

The Riemann hypothesis is equivalent to the fact the the reciprocal function 1/zeta (s) extends from the interval (1/2,1) to an analytic function in the quarter-strip 1/2 < Re s < 1 and Im s > 0. Function theory allows one to rewrite the condition of analytic continuability in an elegant form amenable to numerical experiments.